Long-term pharmacotherapy of adults with
Attention-Deficit/Hyperactivity Disorder (ADHD):
A literature review and clinical study

Mats Fredriksen, MD

Institute of Clinical Medicine, Faculty of Medicine, University of Oslo
Division of Mental Health and Addiction, Vestfold Hospital Trust
2014
Acknowledgements

The present work was carried out at the Division of Mental Health and Addiction at Vestfold Hospital Trust which provided me with excellent working facilities, and a clinically inspiring milieu at the specialized outpatient clinic where I have worked as a psychiatrist and neurologist since 2005.

The idée for this project can be traced back to my participation as clinician delegate in an expert group serving The Breakthrough project in psychiatry on ADHD for the Norwegian Medical Association in 2004. The expert group was challenged on the evidence of early recognition and treatment of ADHD at all ages.

In spring 2007, I approached Dr. Dawn E. Peleikis, MD, PhD, then at the Department of Psychiatry, Aker University Hospital who had performed a clinical study with follow-ups, in order to discuss potential projects of clinical follow-up studies on adult ADHD. With her enthusiastic engagement, she encouraged me to go ahead with elaborating a clinical study on adult ADHD patients, a patient group that occupied much of my daily clinical practice at the outpatient clinic. She also introduced me to other competent scientists who came to be co-supervisors in this PhD project. I am greatly indebted to her for taking on the responsibility as my main supervisor. Her encouraging mind, support and constructive criticism have been invaluable to me throughout the work with the dissertation.

I want to express my sincere gratitude to my two co-supervisors. Professor Alv A. Dahl, MD, PhD, at the Department of Oncology, Oslo University Hospital, Radiumhospitalet for sharing of his vast knowledge, and experienced academic skills, and his tireless engagement in the study and accuracy of study presentation. Professor Egil W. Martinsen, MD, PhD, at the Institute of Clinical Medicine, University of Oslo, has shown great interest for my work and given me generous and constructive guidance, and sharing of his intellectual curiosity throughout the project.

During the work of this thesis, I have had the pleasure to meet and learn from many competent persons who have shared their time and commitment in the process of this project. In particular, I would like to thank my colleague at the clinic psychiatrist Christian Reissig, MD, who contributed to the data collection and diagnostics of the patients. Special thanks to the psychiatric nurses and coworkers at the Division of Mental Health and Addiction, Vestfold Hospital Trust who contributed to the rapid inclusion and coordination of data collection Runar Eriksen, Tone E. B.Greidung, Åse M. T. Haug, Petter J. Hjelseth, Rita V.
Løken, Monica E. Luhr and Ingrid Nordsveen. A special thank goes to the secretaries Tone I. Esaiassen and Heidi U. Lønn whose efforts of keeping track of the research archive and plotting thousands of individual data, made the study II and III possible.

I also express my sincere thanks to Ole Klungsøyr, PhD, at the Institute of Clinical Medicine, University of Oslo for advices and completion of statistical analyzes and enlightening discussions on interpretation of data. I am thankful to my other co-authors; professor Jan Haavik, MD, PhD, at Department of Biomedicine, and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, for his interest of the project, and important contribution to the research questions and scientific discussions, and Dr. Anne Halmøy, MD, PhD at Division of Psychiatry, Haukeland University Hospital, who generously shared of her experiences and interests from this field of research.

A special thank to professor Stephen V. Faraone, MD, PhD, at Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, New York, USA, for his great contribution and valuable advice regarding two of the papers included in the thesis.

My leader at the Department of research Division of Psychiatry at Vestfold Hospital Trust, professor Jens Egeland, PhD, deserves a special thank for being very supportive and facilitated arrangement making it possible to complete my project. I am also greatly indebted to Charlotte Elvedal, project coordinator at the Norwegian Council for Mental Health, for her efficient administration of the funding sources and supportive interest in our project.

A special thank goes to Michael Lensing at Oslo University Hospital for his initiative and organizing of the National Research Network on ADHD, which has been an important and inspiriting forum to be part of.

Warm thanks go to my beloved wife, Anne Mari, for her patience and admirable endurance with may late nights and long weekends I have been absent from family in the company of this work. Her support and love made the completion of this thesis possible. I am also grateful to my loving parents, for their support and interest of my work. Finally, thanks to our children Line Mari, Kamilla Kristine, Ingvild Helene and Mathias for inspiration, each of their own way.
Table of contents

Acknowledgements .. 1
Table of contents .. 3
List of papers .. 5
Abbreviations .. 6
Summary of the thesis .. 7

1. Background ... 9
 1.1. Clinical environment and study inception ... 9
 1.2. Basic characteristics of ADHD ... 10
 1.2.1. Childhood ADHD ... 10
 1.2.2. Adult ADHD ... 13
 1.3. Symptom presentation and functional impairments in adult ADHD 14
 1.4. Pharmacotherapy of adult ADHD .. 16
 1.4.1. Previous reviews on medical treatment of adult ADHD 16
 1.4.2. Current pharmacotherapy ... 17
 1.5. Summing up of background .. 19

2. This thesis .. 20
 2.1. Setting of the study ... 20
 2.2. Purpose and specific aims .. 21
 2.2.1. Study I ... 21
 2.2.2. Study II .. 22
 2.2.3. Study III ... 23
 2.3. Ethics ... 23
 2.4. Material and methods .. 24
 2.4.1. Systematic search and evaluation for the review (Paper I) 24
 2.4.2. Subjects in the clinical study (Paper II and III) .. 25
 2.5. Assessment procedures ... 26
 2.5.1. Psychiatric assessments .. 26
 2.5.2. Investigator-rated scales ... 28
 2.5.3. Patient-rated scales ... 30
 2.5.4. Other outcome measures .. 31
 2.5.5. Procedures of treatment and monitoring (Paper III) 32
 2.6. Statistical analysis ... 33
 2.6.1. General analyses .. 33
 2.6.2. Longitudinal mixed model analyses .. 34

3. Results ... 35
 3.1. Review of long-term efficacy and safety of medical treatment (Paper I) 35
 3.2. Educational failure and long-term work disability (Paper II) 41
 3.3. Effectiveness of one-year medical treatment (Paper III) 41

4. Discussion ... 44
 4.1. Methodological issues .. 44
 4.1.1 Methods of the systematic review (Paper I) .. 44
 4.1.2 Methods of the clinical studies (Paper II and III) .. 45
 4.2. Discussion of the main findings ... 49
 4.2.1. The review of long-term medication studies (Paper I) 49
 4.2.2. Functional outcomes in previously untreated ADHD adults (Paper II) 53
 4.2.3. Outcomes following one year of drug treatment (Paper III) 60
List of papers

The thesis is based on the following three papers:

Paper I based on Study I.

Paper II based on Study II.
Fredriksen M, Dahl AA, Martinsen EW, Klungsøyr O, Faraone SV, Peleikis DE. Childhood and persistent ADHD symptoms associated with educational failure and long-term occupational disability in adult ADHD. ADHD Atten Def Hyp Disord (accepted for publication, January 2014).

Paper III based on Study III.
Abbreviations

ADHD attention-deficit/hyperactivity disorder
AMP amphetamine
ASRS adult ADHD self report scale
ATX atomoxetine
CGI Clinical Global Impression rating scales
CS central stimulants
DSM Diagnostic and Statistical Manual of Mental Disorders of the American Psychiatric Association
GAF Global Assessment of Functioning scale
GSI Global Severity Index (derived from SCL-90)
HD hyperkinetic disorder
ICD World Health Organization International Classification of Diseases
MINI Mini International Neuropsychiatric Interview
MPH methylphenidate
OR odds ratio
PCT placebo controlled trials
RCT randomized controlled trials
SCL-90 Symptom Check List 90
WURS Wender Utah Rating Scale
Summary of the thesis

Background: ADHD in adulthood is associated with a wide range of clinical and psychosocial impairments, and the number of adults referred for medical treatment is considerable.

Aims: The overall purpose of this thesis was to study clinically relevant aspects of long-term medical treatment of patients with adult ADHD. To achieve this, three aims were defined: 1) To systematically review the literature on long-term (≥ 24 weeks) pharmacological treatment of adults with ADHD (Study I); 2) To explore educational and occupational status as functional outcomes in previously not medicated adult ADHD patient (Study II); and 3) To assess outcomes of a 12 months first time medical treatment period of such patients (Study III).

Materials and methods: In Study I we reviewed electronic databases to identify original studies of long-term effects of stimulant therapy in adults. Studies II and III were conducted on a sample of patients recruited at a specialized outpatient clinic for adult ADHD patients.

Study II was a cross-sectional investigation of the impact of retrospectively retrieved childhood dimensional ADHD symptoms and characteristics as well as present state ADHD symptoms on the current level of basic education and current work status in medication-naive adults with ADHD.

Study III was an open-labeled prospective observational study of the 250 adults consecutively included and described in Study II, who received methylphenidate according to current guidelines with a titration-regime for 6 weeks, followed by a flexible-dose-regime. Patients, who did not respond or were non-tolerant for methylphenidate, were shifted to amphetamine or atomoxetine.

Results: Study I: Most of published pharmacological studies reviewed were short-term randomized placebo-controlled trials (RCTs); four trials had intermediate duration between 24 weeks and one year. In contrast to findings in the short- and intermediate term (< 24 weeks) trials, where drug effects are well established, long-term effects (> 24 weeks) of medication on symptoms and functional outcomes, as well as side effects or complications, were less studied. We identified some open label extension studies from short term RCTs (n = 10) that evaluated outcome up to 52 weeks, except for one study on atomoxetine of three years.
Study II: High number of childhood hyperactive-impulsive symptoms and overall severity of childhood ADHD-symptoms were significantly associated with high drop-out rates from school (OR = 3.0), while persisting ADHD inattentive symptoms (OR = 2.5) and comorbid mental disorders (OR = 1.6) in adulthood were more related to the proportion with long-term work disability.

Study III: A total of 232 patients (93%) starting medical treatment completed examination at 12-months, and 70% of them persisted on medication, most commonly methylphenidate, while 30% had discontinued medication. Longitudinal analyses showed significant associations between sustained improvement of symptoms and global functioning measures, and staying on medication. Comorbid mental disorders and adverse effects of medication were related to both lower effectiveness, and reduced adherence to treatment. No serious adverse events were observed.

Conclusions: Study I: The literature on long-term effects of ADHD-medication in adults was scarce and primarily naturalistic. The results suggested that pharmacological treatment of ADHD leads to less symptoms, better self-esteem, higher educational levels and occupational status, fewer accidents, and less delinquency compared to non-treatment, and medication was well tolerated.

Study II: Higher levels of untreated childhood ADHD hyperactive-impulsive symptoms and overall severity of ADHD symptoms were associated with lower level of basic education. Persisting ADHD inattention symptoms and comorbid mental disorders in adulthood were more related to long-term work disability.

Study III: Among stimulant-naïve adults with ADHD 70% continued on medication at one-year follow-up, and treatment with stimulants or atomoxetine was associated with a clinically significant reduction in ADHD symptoms and mental distress, and improvement on measure of global function.

In a general clinical setting one-year treatment with ADHD medications were associated with significant improvements of patients who continued on medication compared with those who discontinued. Given the nature of an open-label uncontrolled design, this calls for more controlled studies on medical treatment in a longer time perspective.
1. Background

1.1. Clinical environment and study inception

Treatment with psychostimulants such as methylphenidate and amphetamine of adult patients with attention-deficit/hyperactivity disorder (ADHD) according to the DSM-IV classification (American Psychiatric Association 1994), or hyperkinetic disorder in the ICD-10 (World Health Organization 1993) which is the official psychiatric classification system of Norway, was first allowed in Norway in 1997. Until 2005 special permission was required from the health authorities for prescription to patients of all ages. From that year the control routines became less rigid, but individual permission was still necessary for prescription of psychostimulants to patients with ADHD.

The Psychiatry of Vestfold County established an ADHD-team in 1997, in order to deliver specialized health services to adults (≥ 18 years) with ADHD. This team has been operating continuously as a centralized outpatient service for adults with ADHD-like symptoms or impairments. The author of this thesis has been a member of this team since 2001.

An increasing number of patients have been referred to the services. During the last three years about 500 new patients have been evaluated each year, and the majority have been treated for ADHD. The current study was planned in 2007, when evidence was scarce for long-term benefits of medical treatment of ADHD in adults. However, due to needs of funding and formal approvals the study started in 2009. Following an application to the Norwegian Council for Mental Health the author received a PhD-grant from the Norwegian Extra Foundation for Health and Rehabilitation. Since this study started 2009, several studies addressing aspects of the research questions raised in the current project have been published. Thus, in order to provide novel contributions, some of the research themes in the primary protocol have been modified.
1.2. Basic characteristics of ADHD

1.2.1. Childhood ADHD

ADHD according to the DSM-IV-TR classification (American Psychiatric Association 2000) is a common childhood mental disorder with a prevalence varying from 2-10% among children (Heiervang et al. 2007, Scahill & Pachler 2007, Polanczyk et al. 2007). The disorder is two to four times more common among boys than girls, though this sex difference is reduced with increasing age (Bauermeister et al. 2007, Rucklidge 2010). According to the DSM-IV-TR classification the core symptoms of ADHD are developmentally inappropriate lack of attention and/or hyperactivity, and impulsivity. Most of the symptoms are defined in observational terms as behavioural symptoms rather than emotions or perceptual symptoms. However, still it can be challenging to distinguish between the extremes of normal levels of inattention, hyperactivity and impulsivity and the levels defined as psychopathology. According to DSM-IV-TR in order to make a diagnosis, the symptoms must cause significant impairment in at least two different functional settings for at least six months, and be at a level clearly exceeding what is expected of children at the same age.

The diagnostic criteria of ADHD in the DSM-IV-TR and the research criteria of hyperkinetic disorder in the ICD-10 (World Health Organization 1993) are similarly worded. A difference is the requirement of symptoms from both the domains of inattention and hyperactivity-impulsivity symptoms in the ICD-10, which exclude the inattentive subtype according to the DSM-IV-TR from the full syndrome diagnosis in the ICD-10.

The eighteen symptom criteria of ADHD in the DSM-IV and ICD-10 hyperkinetic disorder are grouped in three domains of core symptoms: the inattentive, the hyperactive and impulsive domain. In DSM-IV-TR these domains are combined into the three subtypes of ADHD; the combined subtype with both inattentive and hyperactive-impulsive symptoms, the predominantly inattentive subtype with mainly inattentive symptoms, and the predominantly hyperactive-impulsive subtype with mainly hyperactive-impulsive symptoms, which is rare compared to the other subtypes (Table 1). In the ICD-10 there is no separation into subtypes, and those not meeting criteria of full syndrome hyperkinetic disorder (F90.0), may be coded as “Other hyperkinetic disorders” (F90.8). In this thesis we applied the DSM-IV-TR diagnosis of ADHD and the corresponding diagnostic criteria.
Table 1. Diagnostic criteria of Attention-Deficit/Hyperactivity Disorder according to DSM-IV-TR Criteria for ADHD

A. Either (1) or (2):

(1) Six (or more) of the following symptoms of inattention have persisted for at least 6 months to a degree that is maladaptive and inconsistent with developmental level:

Inattention
- a. Often fails to give close attention to details or makes careless mistakes in school-work, work, or other activities
- b. Often has difficulty sustaining attention in tasks or play activities
- c. Often does not seem to listen when spoken to directly
- d. Often does not follow through on instructions and fails to finish schoolwork, chores, or duties in the workplace (not due to oppositional behavior or failure to understand instructions)
- e. Often has difficulty organizing tasks and activities
- f. Often avoids, dislikes, or is reluctant to engage in tasks that require sustained mental effort (such as schoolwork or homework)
- g. Often loses things necessary for tasks and activities (e.g. toys, school assignments, pencils, books, or tools)
- h. Is often easily distracted by extraneous stimuli
- i. Is often forgetful in daily activities

(2) Six (or more) of the following symptoms of hyperactivity-impulsivity have persisted for at least 6 months to a degree that is maladaptive and inconsistent with developmental level:

Hyperactivity
- a. Often fidgets with hands or feet or squirms in seat
- b. Often leaves seat in classroom or in other situation in which remaining seated is expected
- c. Often runs about or climbs excessively in situations in which it is inappropriate (in adolescents or adults, may be limited to subjective feelings of restlessness)
- d. Often has difficulty playing or engaging in leisure activities quietly
- e. Is often "on the go" or often acts as if "driven by a motor"
- f. Often talks excessively

Impulsivity
- g. Often blurts out answers before questions have been completed
- h. Often has difficulty awaiting turn
- i. Often interrupts or intrudes on others (e.g., butts into conversations or games)
B. Some hyperactive-impulsive or inattentive symptoms that cause impairment were present before age 7 years.

C. Some impairment from the symptoms is present in two or more settings (e.g. at school/work and at home).

D. There must be clear evidence of clinically significant impairment in social, academic, or occupational functioning.

E. The symptoms do not occur exclusively during the course of a Pervasive Developmental Disorder, Schizophrenia, or other Psychotic Disorder, and are not better accounted for by another mental disorder (e.g. Mood Disorder, Anxiety Disorder, Dissociative Disorder, or a Personality Disorder).

Based on these criteria, three subtypes of ADHD are identified:

AD/HD, **Combined Type**: if both criteria A1 and A2 are met for the past 6 months

AD/HD, **Predominantly Inattentive Type**: if criterion A1 is met but criterion A2 is not met for the past six months

AD/HD, **Predominantly Hyperactive-Impulsive Type**: if Criterion A2 is met but Criterion A1 is not met for the past six months

Some limited changes in the diagnostic criteria have been made in the new DSM-5 classification published in May, 2013. Worth noting is that the age at onset-criterion is shifted from seven up to twelve years of age, the subtypes are replaced by their modes of presentation, and an adult category of ADHD is established with requirements of less criteria than in childhood (American Psychiatric Association 2013). However, this thesis is based on the DSM-IV-TR definitions.

In general children suffering from ADHD symptoms have reduced social functioning, school performance and practical skills (Biederman et al. 2012b, Biederman et al. 2010c). These problems are linked to deficits in attention, ability to perform targeted activities, and disorganized and impulsive actions during their development (Mannuzza & Klein 2000). A group meeting both the general criteria for ADHD/hyperkinetic disorder and conduct disorder, characterized by antisocial behaviour, is considered to represent a separate syndrome rather than being part of the ADHD in childhood and youth (Biederman et al. 2008b, Klein & Mannuzza 1991, Mannuzza et al. 2008).
1.2.2. Adult ADHD

Persistence of ADHD into adulthood

Although ADHD is considered a childhood neurodevelopmental disorder characterized by age-inappropriate levels of inattention, hyperactivity and impulsivity (Kooij et al. 2010), a significant body of research, including follow-up studies, have confirmed the persistence of ADHD symptoms into adulthood for 50-65% of the childhood patients (Biederman et al. 2012b, Biederman et al. 2012c, Barkley et al. 2002, Mannuzza et al. 1991, Kessler et al. 2005c, Polanczyk & Rohde 2007, Fayyad et al. 2007, Mannuzza et al. 2003, Lara et al. 2009, Kooij et al. 2005). Most children and adolescents with ADHD do not recover fully, and their disorder affects them further across their lifespan, leading to chronic but more covert adult ADHD symptoms in both sexes (Faraone et al. 2006a, Achenbach et al. 1995, Biederman et al. 2010b). Hyperactivity and impulsivity often decline during adolescence, while inattention tends to persist (Faraone et al. 2006a).

Some patients who are not recognized in childhood, may experience increased impairments in adolescence, and the age-at onset criterion of seven years has been considered to be too stringent (American Psychiatric Association 2013). However, most children with late onset of ADHD are younger than twelve years when meeting the diagnostic criteria (Faraone et al. 2006b). Moreover, a delayed diagnosis in adulthood does not necessarily mean a milder or sub-threshold burden of the disorder. Previously undiagnosed ADHD adults are found with as much clinically significant impairments as the childhood diagnosed (Able et al. 2007).

Comorbid mental disorders

Adults with ADHD have increased risk of co-occurrence of other mental disorders, particularly drug and alcohol abuse and dependence disorders, compared to controls without ADHD (Hechtman et al. 1984, Barkley et al. 2004). Adult ADHD in many cases also goes unrecognized and may present mainly with comorbid symptoms (Barkley 2008). The prevalence of comorbid mental disorders is as high as 80% in some studies (Torgersen et al. 2006, McGough et al. 2005), and affective, anxiety and substance use disorders are most frequently reported (Halmoy et al. 2010, Kessler et al. 2006, Sobanski et al. 2007, McGough et al. 2005, Torgersen et al. 2006, Torgersen et al. 2013).

The prevalence of comorbid antisocial personality disorder (ASPD) varies in clinical samples (7% - 44%) of ADHD adults (Cumyn et al. 2009, Torgersen et al. 2006). It is evidence that some youths with conduct disorder may develop a more severe and persistent

Somatic health problems due to unhealthy lifestyle such as obesity (Cortese et al. 2008), smoking (Kollins et al. 2005), drug abuse (Wilens et al. 2011a) and sleep disturbances (Gau et al. 2007) are more common among ADHD adults than in the general population. Increased prevalence of migraine and asthma are also found among ADHD patients (Fasmer et al. 2011a, Fasmer et al. 2011b).

Sex differences

Unlike childhood ADHD, which is far more prevalent among boys, the sex ratios tend to be more equal in adult ADHD (Barkley et al. 2010, Faraone et al. 2006a), and some studies even find that more females than males are diagnosed with ADHD in adulthood (Groenewald et al. 2009). A review of sex differences across the lifespan, reported that females compared to males with ADHD, less frequently had been diagnosed with hyperactive-impulsive symptoms in childhood (Rucklidge 2010). Levels of ADHD symptom severity and distribution of ADHD subtypes have been found without significantly differences between males and females (Grevet et al. 2006). However, in a large study (n = 536, 65% males) of sex differences (Robison et al. 2008), the authors reported that adult females were more severely affected on ADHD symptom scales than males.

Girls with ADHD are more frequently suffering from internalizing symptoms, such as anxiety and depression, than boys (Staller & Faraone 2006), and these differences seem to be maintained into adulthood (Quinn 2008, Biederman et al. 2004, Halmoy et al. 2009, Sobanski et al. 2007). In studies of adult ADHD substance abuse disorders and criminality are more prevalent among males, while affective, eating, and somatization disorders were more common among females (Rasmussen & Levander 2009, Sobanski et al. 2007). A review recommends future research to include both sexes in their samples (Rucklidge 2010) like we endeavored in our project.

1.3. Symptom presentation and functional impairments in adult ADHD

and long-term work disability are particularly relevant adult outcome measures due to the serious social, financial and personal consequences of impairments in these areas (Biederman et al. 2008).

Adolescents with ADHD have poor educational achievement compared to those who did not have ADHD as children (Barkley et al. 2006, Mannuzza et al. 1993, Hechtman et al. 1984). In a study of adult patients, all ADHD subgroups were significantly less educated and more frequently were unemployed compared with non-ADHD controls from the community (Murphy et al. 2002). Compared to controls, patients with both the combined and the inattentive subtypes of ADHD had significantly less basic education, lower proportion of graduation from college, and they were more likely to have received special education at school.

A few studies of adult ADHD have addressed whether these outcome measures vary among patients with the various childhood ADHD subtypes (Murphy et al. 2002, Sobanski et al. 2008). Sobanski et al. (2008) found that patients with all ADHD subtypes had significantly less basic education, were more frequently unemployed, and had more lifetime mental comorbidity compared to healthy controls.

Murphy et al. (2002) reported that compared to healthy community controls, patients with both the combined and the inattentive ADHD subtypes had significantly less basic education, lower proportion of graduation from college, and they were more likely to have received special education in school.

However, a considerable literature has shown that DSM-IV childhood ADHD subtypes are unstable (Lahey et al. 2005, Nigg et al. 2010). Over time childhood hyperactive-impulsive symptoms tend to decline at a higher rate than inattentive symptoms (Faraone et al. 2006a). Based on these findings, examining the number or accumulated load of inattention and hyperactivity-impulsivity symptoms (according to the DSM-IV-TR) dimensionally, rather than by nominal subtype categories, should be more appropriate in a lifetime perspective on the ADHD syndrome (Lahey & Willcutt 2010). To our knowledge, prior to the start of our project no studies of functional outcomes in patients with adult ADHD had assessed ADHD symptoms in childhood dimensionally.

In our clinical setting, with increasing referrals of ADHD adults, it is relevant to examine the relationship between symptoms and characteristics in childhood and functioning in adult life among our patients. Few studies of adult ADHD have specifically examined childhood ADHD symptoms dimensionally and their relation to educational attainment and
work disability in adulthood. More knowledge of such associations could pave the way for tailored interventions to specific subgroups of ADHD patients, to modify and ease the burden of this disorder earlier in life. A long-time follow-up have suggested beneficial effectiveness of early interventions and medication in youths (Powers et al. 2008).

To sum up; the literature is scarce regarding the associations between childhood ADHD symptoms and characteristics, and outcomes like basic education level and work disability in previously untreated adults with ADHD. More knowledge of childhood symptoms and characteristics of those who seek treatment in adulthood can make earlier recognition possible and prepare the ground for more proper interventions in childhood.

1.4. Pharmacotherapy of adult ADHD

1.4.1. Previous reviews on medical treatment of adult ADHD

Issues about use and evidence for effects of ADHD medication are currently raised in the public domain, most for children (A-magasinet 2011, Jakobsen 2013, Nyfløt 2013). Several papers on medical treatment of ADHD adults have reported efficacy of medical treatment up to twelve weeks (short-term ≤12 weeks) after initiation (Wilens et al. 2011b, Torgersen et al. 2008, Retz et al. 2011, Faraone et al. 2004). In a systematic examination and meta-analysis of 19 studies of ADHD-medications based on randomized controlled trials (RCTs) (Faraone & Glatt 2010), the authors concluded that both central-stimulant such as methylphenidate and amphetamine, as well as non-stimulant medications such as atomoxetine, were effective for treating ADHD in adults in a short-term perspective. However, stimulant medications had greater efficacy than the non-stimulants. No significant differences were found between short-acting tablets (acting under four hours) and long-acting formulations (acting over 8 hours) of stimulant medications in these short-term studies.

A PubMed search prior to our study identified no prior reviews addressing long-term medication in adults with a defined duration time above a certain time limit (Santosh et al. 2011). One review of treatment studies in general on adult ADHD (Torgersen et al. 2008) reported no trials with duration longer than 20 weeks. A literature search provided some citations that refer to long-term trials of ADHD. However, no consensus existed regarding
definition of "long term" in this field. Obviously, pharmacological interventions and studies targeting chronic, potentially life-long conditions such as ADHD need to be extended for much longer periods than for episodic disorders. Here we have decided to adopt the definition of long-term studies for treatments with duration for 24 weeks or more (Rösler et al. 2009, Rösler et al. 2010), and intermediate studies between twelve and 24 weeks.

In a paper focusing on methodological issues of stimulant medication, Hazell (2004) reviewed three psychostimulant studies of children, and argued that studies of long-term effects of stimulant medication implied specific methodological challenges such as the variable time course of the disorder, variability in adherence with treatment, and patients’ decisions concerning treatment continuation. The author suggested that future research examining long-term effects of psychostimulant treatment of necessity should be naturalistic, but control for characteristics such as adherence to treatment, and variation in the course of ADHD.

To sum up, until 2009 most pharmacotherapeutic studies of adults with ADHD have been RCTs of up to twelve weeks duration. Very few studies have summarized outcomes of treatment of longer duration than 12 to 20 weeks in adult ADHD. A review examining the literature on long-term efficacy of pharmacotherapy, including a wide spectrum of outcome measures, side-effects, and effects of comorbidity, has been warranted in order to clarify the rationale for long-term medication treatment in ADHD adults.

1.4.2. Current pharmacotherapy

Current Norwegian and several international therapy guidelines recommend pharmacotherapy for adults with ADHD (Norwegian Directorate of Health 2005, Canadian ADHD Resource Alliance [CADDRA] 2008, Kendall et al. 2008, Seixas et al. 2012, Atkinson & Hollis 2010, Kooij et al. 2010, Gibbins & Weiss 2007, National Steering Committee on Multidisciplinary Guideline Development 2005, National Collaborating Centre for Mental Health 2009), but recommendations concerning duration are not specified. According to guidelines, first-line medications should be psychostimulants such as methylphenidate (MPH) and amphetamines (AMP). At start of our clinical study in 2009, various formulations of methylphenidate were licensed for use in ADHD adults in Norway, but from February 1, 2011, these centralstimulant drugs were no longer approved for general use in adult patients in Norway, and prescription are as such off label.
Their mode of action is supposed to be potentiation of the amount of synaptic dopamine through blockade of the presynaptic dopamine re-uptake transporter protein. Such pharmacotherapy, although not curative, tends to effectively reduce core symptoms in 70% of treated patients in placebo-controlled efficacy studies (< 12 weeks) of adults with ADHD (Faraone & Glatt 2010). However, there is a lack of evidence for longer time efficacy of psychostimulant treatment (Meszaros et al. 2009, Torgersen et al. 2008).

Unfortunately, about 30% of adults with ADHD do not respond to central stimulants in short-term RCTs (Biederman et al. 2007), and in addition intolerable adverse effects (affecting 7 - 10%) may lead to discontinuation of therapy (Bejerot et al. 2010). Also questions about safety and risk of misuse have raised concerns about widespread use of stimulants (Wilens et al. 2008, Rappley et al. 2006, Kuehn 2009). Among non-stimulant alternatives assumed without risk of abuse, atomoxetine is a drug with clinical evidence for efficacy in adult ADHD (Adler et al. 2008, Adler et al. 2006, Adler et al. 2009a, Young et al. 2011, Durell et al. 2013, Faraone et al. 2005, Sobanski et al. 2012, Surman et al. 2010). This drug act as a selective inhibitor of the presynaptic norepinephrine transporter (Kratochvil et al. 2003), and the side-effect profile may differ somewhat from that of the stimulants (Garnock-Jones & Keating 2009).

Multimodal strategies including psychosocial treatment of adult ADHD

Current guidelines for treatment of ADHD commonly recommend multimodal strategies, which combine psychosocial treatment and ADHD medication as elements of a comprehensive treatment program (Dodson 2005). There are few studies of multimodal treatment of adults with ADHD. There is some evidence that cognitive behavioral therapy (CBT) used concurrently with stimulants improve functions parallel with symptom relief in adult ADHD patients concurrently treated with stimulants (Safren et al. 2005, Rostain & Ramsay 2006, Weiss et al. 2008). Methodological challenges of these studies include selection of comparable control groups, broad-based measures of outcome, and the possibility of type II statistical error due to small samples lacking adequate statistical power.

Most of the RCTs on ADHD medication only examine additional medical management. In open-label extension phase studies of some RCTs, however, psychosocial treatment procedures may be considered as a confounder to the observed outcomes. Due to their long-term and naturalistic design, all these studies imply some kind of supportive care in addition to medication, and it is reasonable to assume that this has some impact on patients’ treatment outcome.
Lack of knowledge about long-term medical treatment in adults

There are clear limitations in our knowledge about long-term effects of drug treatment for adult ADHD. Prior to our study, a number of questions concerning outcome of such treatment seem unresolved including tolerability, effects on different symptoms and mental comorbidity, issues of compliance, and effects related to outcomes like level of basic education and work disability.

We found no updated reviews which had addressed and summarized our knowledge of long-term medication in adult samples of ADHD patients. To clarify such issues it seemed warranted to conduct an updated systematical review of current knowledge on effectiveness on various measures of outcome.

Although stimulant medications are recommended as the first-line treatment in ADHD, the sparse literature on long-term drug treatment of adult ADHD had limited clinically relevance due to problems concerning sample selection, attrition and adherence, side-effects registration and other aspects of research methodology. Also, considerable variations in medication regimens both within and across nations indicated an ambiguousness of evidence. Previous reviews just recommended more observational studies to examine clinical relevance of medical treatment for adult ADHD in a longer term perspective. This status of evidence regarding medication contributed to our decision to perform a prospective naturalistic study that could consider these issues, and was a major reason for conducting study III of this thesis.

1.5. Summing up of background

An increasing number of adult patients are seeking medical treatment for persistent ADHD. The majority of patients with adult ADHD experience a chronic condition, and the treatment is therefore expected to go on for years. Therefore, the main aim of the present thesis was to study clinically relevant aspects of long-term medical treatment of adult ADHD.

We identified a lack of updated reviews of the research literature on long-term medical treatment that could clarify issues of clinical relevance for long-term pharmacotherapy with stimulants. Prior to our study, we found no consensus on the definition of long-term treatment duration. However, there was a lack of knowledge about effects of medication of ADHD adults with duration longer than 12-20 weeks. A review examining the literature on long-term
efficacy of drug treatment, including a wide spectrum of outcome measures, adverse effects, and effects of comorbidity, was relevant to clarify the evidence for long-term medication treatment in ADHD adults.

Furthermore, adult outcomes were associated with other factors than medication such as age, gender, type and levels of ADHD symptoms and comorbidity. A study of non-medicated ADHD adults could yield novel knowledge regarding these factors. To our knowledge, prior to this thesis, no study of adult ADHD had examined childhood ADHD symptoms dimensionally as predictors of functional outcomes in adulthood like attained basic education level and work disability in previously untreated adults with ADHD. More knowledge of such associations could prepare the ground for more focused studies and interventions.

Previous review articles recommended more observational studies to examine clinical relevance of medical treatment for adult ADHD in a longer term perspective. Conducting an observational study of one-year’s duration in a clinical representative sample could add significantly to the literature, and be helpful to clinicians in every-day practice meeting these patients.

2. This thesis

2.1. Setting of the study

The clinical study (Paper II and Paper III) was performed on the same patient sample recruited at the specialized outpatient clinic at the Division of Mental Health and Addiction, Vestfold Hospital Trust, Norway. The clinic is located in the South-Eastern part of Norway, and receives second line referrals from a region of about 250,000 adult inhabitants. Most individuals seeking general practitioners who were suspected of adult ADHD within that region were referred to the clinic, so the patient population was fairly unselected from this catchment area.
2.2. Purpose and specific aims

The overall purpose of this thesis was to study clinically relevant aspects of long-term (defined as treatment duration ≥ 24 weeks) medical treatment of adult ADHD, and in order to fulfill that purpose three studies were conducted:

- Study I) A literature review of studies on long-term pharmacological treatment of adults with ADHD (Paper I).
- Study II) A study of educational and occupational status as functional outcomes in previously unmedicated adult patient with ADHD referred to a specialized outpatient clinic (Paper II).
- Study III) A prospective observational study for 12 months of unmedicated adult patient with ADHD when they for the first time entered systematic medication and follow-up (Paper III).

2.2.1. Study I

Background

Until 2009 we found few studies summarizing outcomes of treatment of longer duration than 12 to 20 weeks in adult ADHD. A review of long-term efficacy of pharmacotherapy, including a wide spectrum of outcome measures, side-effects, and effects of comorbidity, was suggested for further exploration.

The aims

The aims were:

1) To review systematically original studies of adults with ADHD, addressing efficacy and tolerability of medical treatment with at least 24 weeks duration, using either prospective or retrospective designs.
2) To discuss some methodological challenges encountered in long-term pharmacologic studies of ADHD.
The research questions

1) How many RCTs and open-label prospective studies with duration 24 weeks or more were reported based on our literature base search strategy?

2) What are the characteristics of these studies regarding location, attrition, sample size, gender, age and comorbidity?

3) How is effectiveness in a long-term perspective?

4) How are medications tolerated, and to what degree are tolerability, adverse effects and safety reported?

2.2.2. Study II

Background

The research literature is limited regarding childhood ADHD symptoms and characteristics in previously untreated ADHD adults, especially concerning relationship between their childhood symptoms and characteristics, and adult outcomes of educational deficits and occupational disability, which are commonly impaired among adult ADHD patients.

Aims

The aim was to examine the associations between childhood ADHD symptoms and characteristics and adult ADHD functional outcomes as educational deficits and work disability.

The research questions

1) Whether the number of childhood ADHD symptoms, and severity of symptoms, are significantly associated with lower levels of education and long-term work disability in treatment naïve adults with ADHD?

2) Whether observed associations are moderated by persisting ADHD symptoms in adulthood, gender and comorbidity?
2.2.3. Study III

Background
There are very few prospective studies on treatment with ADHD medications for duration of one year or more, and those identified have limitations regarding sample bias, lack of reports of comorbidities or side-effects, or have significant drop-out rates, making difficulties with drawing generalizations of treatment effectiveness to a clinical relevant target population. In addition considerable variations in guidelines for drug treatment reflect need for more observational studies on long-term medication of adult ADHD.

Aims
The aim was to prospectively examine effectiveness of stimulant and non-stimulant medication for one year of adult ADHD patients in a clinical relevant setting prospectively.

The research questions
1) How is the effectiveness measured by the following outcomes (ASRS, GAF, CGI-I and GSI scores) and including tolerability after one year of drug treatment of previously drug-naïve adult ADHD patients, with methylphenidate being the first-line medication?

2) Are outcomes moderated by age, gender, dosage, side-effects, and comorbidity?

2.3. Ethics
The patient studies (II and III) were approved by The Regional Committee for Medical and Health-Related Research of South-East Norway and The Norwegian Social Science Data Services. The study protocol also was presented to the Norwegian Medicines Agency which considered Study III to be naturalistic by follow-up of patients in treatment according to the national guidelines, and therefore not in need of registration as a clinical trial. After receiving oral and written information about the study, all participants gave written informed consent before enrollment.
2.4. Material and methods

2.4.1. Systematic search and evaluation for the review (Paper I)

A systematic literature search was performed by assistance from the librarian at the Norwegian Centre for Research, Education and Service using the following electronic databases: National Library of Medicine Pubmed site, EMBASE and PsycINFO until January 2012. Published papers for the last three decades were initially searched for making use of combinations of the following search terms [Medical Subject Headings (MeSH terms) and textwords]; ADHD, adult and stimulants. The PubMed database got 1151 hits, EMBASE 627 hits and PsychINFO 157 hits. Additionally, in order not to be missed in the few terms initial search, we expanded the search of PubMed and EMBASE making use of multiple combinations of the search terms; ADHD or Attention-Deficit Hyperactivity Disorder (20975 hits), and added trial, clinical trial, and long-term, effectiveness, effect, efficacy, outcome, outcomes, occupational outcome, work status, functional, or functions (4580 hits).

To get medical relevant original studies on adults, we further restricted by conjugation of either of the terms; medication, treatment, stimulants, psycho-stimulants, central-stimulants, methylphenidate, (dex)amphetamine, or atomoxetine (3127 hits), and adult and restricted by not child (901 hits), neither animal, nor meta-analysis or review articles (549 hits). We restricted our search to papers published in English on human subjects aged 18 years or older at the time of evaluation in adulthood, ending up with 533 hits.

Further selection and application of ‘long-term treatment’ definition

Further on, by perusal of all these study abstracts, or papers in detail if the abstracts lacked relevant information, two of the authors (Fredriksen and Haavik) independently included papers meeting the a priori set requirements for inclusion of childhood onset of DSM-IV ADHD or ICD-10. By conferring the other authors if disagreement, we included some older studies using the DSM-III diagnosis of ADHD (Hechtman et al. 1984) or the Utah Criteria (Wender et al. 2011). Requirement of sample size was a priori set at samples with 30 subjects or more to be included to reduce bias due to small samples.

The reviewed studies included either randomized controlled trials (RCTs) with treatment duration of 24 weeks or longer, and RCTs of shorter duration with open-label
extensions of total duration of 24 weeks or longer. Due to few reported RCTs with duration more than 12 weeks (Faraone & Glatt 2010, Torgersen et al. 2008), we applied the term of *long-term treatment* defined to comprise studies of 24 weeks or more (Rösler et al. 2010).

We also included open-label studies with a prospective follow-up methodology and with reported dosage of medication with duration for one year or more in order to compare with the extension studies. We additionally agreed on that some studies excluded from the initial search procedure due to their naturalistic or retrospective design, still should be included if they either expanded the duration of treatment (several years duration) or studied functional outcomes or safety and adverse effects in long-term perspectives. The outcome measures of all studies should be broadly clinically relevant, such as ADHD symptom scores, features of mental health or comorbidity, measures of social functions, occupational status or medication tolerability.

Although based on systematic search procedures, the low number of RCTs meeting inclusion criteria in the review did not allow for standardized meta-analytic regression methodology. For description and comparison of the studies identified, we recorded characteristics of study design, sample characteristics such as mean age, gender ratio, diagnostic system and drugs used, length of follow-up, rate of responders and completers of the studies.

2.4.2. Subjects in the clinical study (Paper II and III)

Sampling

Referred patients aged 18 to 60 years to the specialized Outpatient Clinic were recruited consecutively, and prospectively included to the clinical studies. For inclusion, the subjects had to fulfill DSM-IV-TR criteria for ADHD, which include the presence of ADHD symptoms during both childhood and adulthood.

Exclusion criteria

1) Comorbid mental disorder was not exclusion criteria unless assessed by a board certified psychiatrist to be in immediate need of treatment, such as current psychosis, major depression with melancholia or suicidal ideation, panic attacks with increasing
frequency, or alcohol- or substance abuse last two months. Patients with any psychiatric comorbidity considered in need of treatment should undergo at least three months adequate therapy before inclusion, and those previously treated for chronic mental disorders were included despite no remission, except for psychotic disorders, chronic substance use dependence or assessed acute suicidal risk.

2) Any medical contraindications for stimulant treatment such as hyperthyroidism, cardiovascular diseases or cardiac arrhythmias.

3) Having previously tried stimulant medication in adulthood or during the prior five years for patients 18 years of age.

4) An Intelligence Quotient (IQ) under 70 based on the Wechsler Adult Intelligence Scale IV (Wechsler 2008).

5) Assessed with clinical symptoms and behaviors consistent with a pervasive developmental disorder/autism spectrum disorder.

During the inclusion period from May 2009 to December 2010, 620 patients were referred and evaluated, and 358 (58%) were excluded since they met one or more of the exclusion criteria. Additionally 12 eligible patients declined to take part, leaving a total of 250 stimulant naïve adult patients for the clinical studies.

2.5. Assessment procedures

2.5.1. Psychiatric assessments

To obtain diagnoses of mental disorders, two board-certified psychiatrists (Christian Reissig, MD and myself) examined all patients. The ADHD diagnosis was ascertained by a multistage and multisource procedure according to DSM-IV-TR criteria (Table 1) (Haavik et al. 2010, Barkley 2008, American Psychiatric Association 2000) with:

A) The structured Diagnostic Interview for ADHD in adults, second edition (DIVA 2.0) (Kooij & Francken 2010). We used the Norwegian version, and I had contributed to its development. To be diagnosed with ADHD, the patients must fulfil:

1) at least 6 out of 9 DSM-IV symptoms of inattention and/or hyperactivity/impulsivity in childhood;
2) currently as adults have at least 6 out of the same 9 DSM-IV symptoms for the last 6 months before the examination,
3) describe a chronic course from childhood to adulthood without any indication of ADHD-free periods.
4) We also included patients with 5 out of 9 symptom criteria for each symptom domain in adulthood if they had met full symptom criteria in childhood. These patients would be classified as ADHD NOS in DSM-IV.
5) The current ADHD symptoms should cause clinically significant impairment in social, educational, or occupational functioning.

Assessments by the DIVA 2.0 allowed for clinical evaluation of symptom criteria of childhood and adulthood ADHD symptoms separately.

B) The MINI International Neuropsychiatric Interview Plus (M.I.N.I.-Plus) was conducted in order to examine comorbid mental disorders and whether the ADHD symptoms might be better explained by another mental disorder. The M.I.N.I.-Plus is a fully structured diagnostic interview for DSM-IV mood disorders, anxiety disorders, somatoform disorders, substance use disorders, psychotic disorders, eating disorders, conduct disorder, antisocial personality disorder (ASPD), and adjustment disorder (Sheehan et al. 1998, Sheehan et al. 2002).

C) The investigator rated Iowa Personality Disorder Screen (IPDS) was applied to screen for personality disorders (Langbehn, 1999; Olsson, 2011). Those meeting criteria were still included in the study if the ADHD symptoms were not considered better accounted for by a personality disorder.

D) Supplementary data to support evidence of childhood symptoms were collected from other informant sources such as school records and questionnaires rated by the parents, blinded for other informants’ ratings (available for 83% of the patients). Collateral information about current symptoms and impairment were also obtained from a close relative invited to participate during the DIVA interview with the patient. In case of discrepancy between historical data and collateral data, or collateral data from different sources, the most original information was emphasized, except for disagreement between assumed subjective judgments; when the patients’ self-report had priority to parents’ or spouses’ report according to the DIVA instructions. Historical data about pedagogical assistance in primary school,
reading or arithmetic problems, grades from school reports, relevant information from other sources on childhood symptoms, such as school records and psychological-pedagogic services records, were also collected systematically.

Physical examination of all patients was performed by their regular physician within the past three months before the examination, in order to exclude somatic diseases. Data from medical records of previous medication were collected for each patient.

Diagnostic agreement and collaboration between the two investigators
During a pilot period at the start of the study, 21 of the examined patients had their diagnoses made independently by the two board-certified psychiatrists. The diagnoses were then compared, and the agreement was calculated with Cohen’s coefficient kappa (Cohen 1988). For the ADHD DSM-IV diagnosis, the kappa coefficient was 0.77; 0.88 for the ADHD hyperactive-impulsive criteria and 0.70 for the inattention criteria. Assessments of comorbid mental disorders showed a kappa of 0.79.

2.5.2. Investigator-rated scales

The Global Assessment of Functioning (GAF) scale
To evaluate overall severity of symptoms and functioning, all patients were assessed by the Global Assessment of Functioning (GAF) scale (Endicott et al. 1976, Hilsenroth et al. 2000, American Psychiatric Association 2000). The GAF scale which is included in the DSM-IV-TR in the section on multi-axial assessments, is an assessment tool for rating overall psychological, social and occupational functioning, and excludes physical and environmental impairment from evaluation. The presentation of the scale is accompanied by the GAF Report decision tree designed to guide clinicians through a methodical and comprehensive consideration of relevant aspects of a patient's current symptoms and functioning to determine a patient's GAF rating in a clinical setting.

The GAF was the primary outcome measure of Study III. We used the Norwegian split version discriminating symptom (GAF-S) and function (GAF-F) in order to improve reliability (Aas 2011). This version is provided with guidelines and a split decision tree, and rating of symptoms and functioning are performed separately on a scale from 1 to 100, divided into 10 equal parts providing defining characteristics, for each 10-point-interval. A
low rating reflects worse symptoms and a poorer level of functioning, whereas a high rating reflects less symptoms and a better level of functioning. The Split-GAF instrument is common in psychiatric clinical practice in Norway, and had been in use for many years at the clinic where our clinical study (Paper II and III) was conducted.

For the majority of patients this assessment was performed by the same investigator at baseline and each scheduled visit until the one-year endpoint. The two psychiatrists (Christian Reissig, MD and myself) were masked to prior assessments, and we did not take part in the psychosocial treatment. To improve our reliability, we had regular meetings, where we discussed the assessments and compared our scorings to the guidelines of GAF (Aas 2011). Prior to study start the investigators scored from patient journal records to assess agreement on inter-rater reliability, and the intraclass correlation coefficient between the assessors of GAF-S was 0.83 and of GAF-F 0.79 at baseline (n = 21).

The Clinical Global Impression (CGI) scale
The CGI scales are widely used outcome measures in several psychopharmacological studies by providing information of clinical relevance (Kooij et al. 2004, Rösler et al. 2009, Biederman et al. 2010a). The Clinical Global Impression-Improvement scale (CGI-I) is a single-item global Likert-type 7 point scale that requires the investigator to assess the patients’ degree of change of the intervention from baseline (very much improved = 1 to very much worse = 7). The CGI-I scale has been found sensitive to changes of drug treatment (Lloyd et al. 2011, National Institute of Mental Health (NIMH) 2013). The Clinical Global Impression scale (CGI was used as a secondary outcome measure in Study III (Guy & National Institute of Mental Health (US) 1976). In our Study III a responder was defined by dichotomized values of much or very much improved (CGI-I ≤ 2) versus less improvement.

To assess agreement between the investigators on the CGI scale, during the initial phase of the study, patients (n = 22) were prospectively evaluated independently by both investigators on the corresponding seven point CGI scale of severity (CGI-S). The intraclass correlation coefficient between the two investigators was 0.78 concerning their average measures.
2.5.3. Patient-rated scales

The Wender Utah Rating Scale (WURS)
To identify the severity of retrospectively assessed childhood ADHD symptoms (Study II), the patients rated the Norwegian short version of the WURS-25 (Wierzbicki 2005, Ward et al. 1993). This scale is not validated in any Norwegian sample, but has shown good psychometric properties in other languages (Retz-Junginger et al. 2003, McCann et al. 2000, Fossati et al. 2001, Caci et al. 2010). The WURS-25 items are rated on a 5-point severity scale (score range from 0-100). To simplify presentation of severity, we categorized the scaled ‘WURS-25’ (median = 56, mean = 56, SD = 17) into three ‘WURS-25 categories’ by the lower and upper quartiles (found to be score < 40 or ‘low severity’, and score ≥ 70 as ‘high severity’). This corresponded well with validation studies of the scale which have set a cut off of score 46 or higher for great likelihood of an ADHD diagnosis, and a corresponding low likelihood of ADHD by score below 30 (Stein et al. 1995, McCann et al. 2000, Ward et al. 1993).

The Adult ADHD Self-Report Scale (ASRS)
Adult ADHD-symptoms during the last six months before baseline (Study II and III) and changes in current ADHD-symptoms from baseline to one-year follow-up (Study III) were self-assessed on the 18 item ASRS version 1.1 (Kessler et al. 2005b). The scale can be separated in two subscales of inattentive symptoms, and hyperactive-impulsive symptoms, each of nine items respectively. We used the continuous scoring method (Kessler et al. 2005b) in order to get a wider numerical dispersion for correlation analyses. The ASRS in our sample had a Cronbach’s alpha of 0.86; the inattention and hyperactivity-impulsivity subscales had alpha values of 0.73 and 0.80, respectively at baseline.

The Symptom Checklist-90 Revised (SCL-90-R)
The SCL-90-R is a broad ranged measure of self-rated mental symptoms (Derogatis & Savitz 1999). The symptoms last week before the examination are rated on a 5-point scale. The mean score of all 90 items is labeled as the Global-Severity-Index (GSI) (Vassend & Skrondal 1999). The SCL-90-R has been validated in a Norwegian population sample, and normative values are available (Vassend & Skrondal 1999). The GSI score was a secondary outcome measure in Study III.
2.5.4. Other outcome measures

Functional outcomes of education and work disability

Study II contained two primary outcome measures:

1) **Low level of basic education** was defined as not having completed high school, by drop out from or interruption of the expected course of education before ending a secondary school program equivalent to high school including vocational school programs.

2) **Long term work disability** was defined as being out of work during the past year before entering the study, by being out of any paid work, ordinary school or studies due to ADHD-related disability.

Information about these two functional outcomes was obtained from interviews with the patients and from collateral sources. Data on education were supplemented with historical data collected from school grades and parent information, and all this information was validated during interviews with the patients. If information from various sources was contradictory, written historical and closest time data were recorded - in that order.

Tolerability and adverse effects

To detect any adverse effects of treatment, **Adverse Events (AEs)** defined as ‘any untoward medical occurrence that may present during treatment with a pharmaceutical product but which does not necessarily have a causal relationship with this treatment’ (Graham et al. 2011, Guideline for Industry 2007), was recorded by free registration of complaints of the patients. In addition, we applied a quantitative measure of side-effects or tolerability by patients’ recording of symptoms by the **Canadian Attention Deficit Hyperactivity Disorder Resource Alliance (CADDRA)** (2011) a symptom questionnaire frequently associated with stimulant treatment; each item on an integer scale of frequency (score 0–3).

Body-weight and heart-rate, systolic and diastolic blood pressure were measured pretreatment and at each visit during treatment by whom. Electrocardiograms were performed pretreatment and at endpoint (Stiefel & Besag 2010) by patients’ GP or at the hospital, and recorded in the case report form in the study.
2.5.5. Procedures of treatment and monitoring (Paper III)

The medication algorithm
The observational study of medication (Study III) had a prospective design. Patients were offered MPH as first-line medication combined with psychosocial treatment according to the current national treatment guidelines (Norwegian Directorate of Health 2005). Patients were assessed for symptoms, functioning and side-effects at scheduled follow-up time points: six-weeks, and three-, six- and 12-months. Standard-titration with immediate-release methylphenidate (MPH-IR) was prescribed for the first six weeks; 5 mg three times a day, stepwise increase until maximum 60 mg/day. Thereafter a flexible dose titration was applied to optimize efficacy (maximum 120 mg/day). Shift into depot-formulation/extended-release methylphenidate (MPH-ER) was offered at the three-month visit if patients reported difficulties with compliance, annoying fluctuations in effect, adrenergic side effects, or otherwise wanted to try an easier administration form. The dosage could be decreased at any time during follow-up depending on tolerability.

If methylphenidate was not tolerated or was ineffective, alternative medications were short-acting dextroamphetamine (dAMP) or atomoxetine (ATX). The dAMP was titrated until maximum 50 mg/day, and dose of ATX began with 25 mg/day for seven days, and was followed by 40 mg until a maximum of 120 mg. Patients could use additional medication in the treatment of any comorbid mental disorder that was indicated, but such medication should not have been initiated within last three months before, and first three months after the baseline assessment. If such other drug treatment was initiated more recently by the patient’s psychiatrist or GP, the start of ADHD medication was postponed accordingly.

Blood sampling and adherence
In a pilot study we performed non-announced blood-sampling and examined methylphenidate plasma-concentration from 12 consecutive patients, who claimed to have taken their medication 2-3 hours earlier that day. In all of these patients the plasma levels of ritalinic-acid were compatible with intake of therapeutic amounts of methylphenidate in all cases (MPH mean daily-dose 47.0 mg, \(SD =16.5\)), plasma-concentration mean 1962 nmol/l (\(SD =742\), range 798–3889).

Adherence to medication was assessed indirectly for all patients by interviews and accounts of prescriptions; taking prescribed less than 70% of doses for the days since the last
visit was considered non-compliance according to procedures applied in studies of adherence (Bosley et al. 1995, Eatock & Baker 2007). To ensure abstinence from narcotics required to maintain ADHD-medication, health care staff supervised urinary screenings of patients reporting any substance use last year, and the assay was performed by liquid chromatography and mass spectrometry.

2.6. Statistical analysis

2.6.1. General analyses

Due to the low number of RCTs meeting the inclusion criteria in Paper I, the review did not suit for standardized meta-analytic regression methodology, and therefore the paper basically was performed as a systematic descriptive review.

All statistical analyses in Study II and III were carried out by The PASW Statistics, version 17.0 for PC (2009). The data were initially analyzed by descriptive methods. On the group level, categorical variables were analyzed using the chi-square test, and stratified in order to explore for sex effects (Grevet et al. 2006). Differences in the continuous outcomes were analyzed with t-tests when the assumption of normal distribution was met, and otherwise with non-parametric tests. The level of significance was a priori set at p < 0.01 because of the multiple tests performed. All tests were two sided. The continuous scores of the WURS-25 and ASRS inattention subscales were categorized into low, moderate and high levels by the quartiles in order to get a more clinically relevant representation.

In Study II logistic regression analyses with ‘not completed high school’ as the dependent variable were adjusted for gender, but not age since predictors should antecede the predicted factor. The work status analyses were conducted adjusted for both age and gender. The specified independent variables were entered into logistic regression models initially unadjusted one at a time, and finally adjusted by entering age and gender together. Corresponding odds ratios (ORs) and their 95% confidence intervals (95% CI) were estimated as measures of strength of associations, and the level of two-tailed significance was set at p < 0.05.
In Study III power analysis determined the sample size with the assumption that about 200 patients would complete at 12-month. Patients continuing on-medication were compared to those off-medication in a visit-wise analysis, and tests for independent groups were used to assess the differences between groups at follow-up. Changes in outcome variables from baseline to endpoint in individuals were analyzed using paired sample tests.

2.6.2. Longitudinal mixed model analyses

These analyses were performed under the supervision of Ole Klungsøyr, PhD, medical statistician at the Institute for Clinical Medicine, University of Oslo. Longitudinal analyses by linear mixed models (LMM) (McCulloch 2006) were planned to assess change over time in the following outcomes: ASRSv.1.1, GAF-S, GAF-F and GSI at scheduled follow-up visits. Several baseline variables considered to be potential confounders for the association between treatment and outcome were adjusted for: gender, age at inclusion, indicators for depression, bipolar or anxiety disorder, substance and alcohol use disorder and antisocial personality disorder. Model selection was based on maximum likelihood (and restricted maximum likelihood) and non-significant covariates were excluded. The time courses of the outcomes were modeled with two piecewise linear splines, prior and following time point t^*, where t^* was 6 weeks for ASRS and 26 weeks for GAF-S, GAF-F and GSI.

To assess a dose-response effect of treatment a cumulative dose variable was constructed ($CumD$). Side effects ($SideEff$) were measured (CADDRA) and served as a time-varying covariate. A cumulative side-effect variable was also constructed ($CumSE$). Higher equivalent dose of medication was associated with higher $SideEff$, and higher $SideEff$ predicted less medication in the next period and also more loss to follow-up. Thus, $SideEff$ plays a role, both as a potential time-varying confounder and a source for selection bias (from loss to follow-up). In the present model, $CumSE$ is adjusted for to reduce the selection bias, and to give a conservative estimate of the treatment effect (adjustment reduced the treatment effect).

The following equation describes the model (with adjustment for one baseline confounder):

$$Y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i}) \times st_{1j} + (\beta_2 + b_{2i}) \times st_{2j} + \beta_3 CumD_{ij} + \beta_4 CumSE_{ij} + \beta_5 X_{1i} + e_{ij}$$
where Y_{ij} is outcome for person $i = 1, \ldots, 250$ at time point $j = 1, \ldots, 5$, e_{ij} is the error-term, β_0, β_1, \ldots are the fixed effects (population averages), b_{0i}, b_{1i}, \ldots are the individual specific random intercepts and slopes before and after t^*, the two spline time-scales are $st_{1j} = \min(time_j, t^*)$ and $st_{2j} = \max(0, time_j - t^*)$ and the two cumulative covariates are given by

$$CumD_{ij} = \sum_{k=0}^{J} Dose_{ik}, \quad CumSE_{ij} = \sum_{k=0}^{J} SideEff_{ik}$$

3. Results

3.1. Review of long-term efficacy and safety of medical treatment (Paper I)

1) How many RCTs and open label prospective studies with duration 24 weeks or more were reported based on our search strategy?

We identified five papers of four separate RCTs with duration ≥ 24 weeks (Röslér et al. 2009, Röslér et al. 2010, Biederman et al. 2010a, Adler et al. 2009a, Young et al. 2011); two of the studies were from the same trial (Röslér et al. 2009, Röslér et al. 2010) (Table 2). All these studies observed significant differences in symptom reduction favoring active medication versus placebo. However, in general these trials provided limited information about changes in functional outcomes. Additionally, 11 initially short-term RCTs were pursued by an open-label extension of the observation period for a total duration of ≥ 24 weeks (Ginsberg & Lindefors 2012, Marchant et al. 2010, Wender et al. 2011, Adler et al. 2009b, Biederman et al. 2005, Weisler et al. 2005, Ginsberg et al. 2011, Adler et al. 2005, Adler et al. 2008, Buitelaar et al. 2011, Marchant et al. 2011) (Table 3). In eight studies medication was methylphenidate, in four atomoxetine and in two amphetamine.

We also included 18 studies with naturalistic or cross-sectional design reporting broader measures of outcomes related to treatment, tolerability or safety (Hechtman et al. 1984, Bejerot et al. 2010, Weiss et al. 2010, Adler et al. 2011, Powell et al. 2011, Powers et al. 2008, Biederman et al. 2009, Halmoy et al. 2009, Gjervan et al. 2012a, Barkley et al. 2003,

2) **What are the characteristics of these studies regarding location, attrition, sample size, gender, age and comorbidity?**

Half of the RCTs, and the majority of the extension studies were performed in United States, and commonly had frequent drop-outs (> 30%), had samples of both sexes, and mean age ranged about 35 – 40 years. Comorbid mental disorders were exclusion criteria in most of the studies. In eight studies medication was methylphenidate, in five atomoxetine and in two amphetamine.

3) **How is effectiveness in a long-term perspective?**

The four RCTs showed significant differences in symptom reduction favoring medication, and these differences were maintained through the follow-up periods (Table 2).

In the RCTs with open label extension the efficacy demonstrated during the acute placebo-controlled phase, was either maintained or further improved during the extended follow-up period (Table 3).

Some naturalistic studies reported a positive correlation between treatment with central stimulants and a positive educational development (Hechtman et al. 1984, Powers et al. 2008, Biederman et al. 2009). Notably, treatment with stimulants in childhood was found to be a significant predictor for being employed in adulthood, and older age at treatment initiation was associated with poorer occupational outcomes (Halmoy et al. 2009, Gjervan et al. 2012a). Regarding risk of developing substance use disorders (SUDs), several naturalistic studies found no link between prior pharmacotherapy for ADHD and subsequent SUDs (Faraone et al. 2007, Barkley et al. 2003, Biederman et al. 2008).

4) **How are medications tolerated, and to what degree are tolerability, adverse effects and safety reported?**

In all the placebo controlled and extension studies, the medication was well tolerated of most patients, and most adverse effects occurred during initial titration phase. Decreased appetite, nausea, palpitations, mucosal dryness, and dizziness were the most frequent side effects
Some epidemiologic studies of adverse effects on large samples of people using central stimulants did not report any significant associations with any increased risk for serious cardiovascular events compared to none-users (Cooper et al. 2011, Habel et al. 2011, Schelleman et al. 2012).

Data in the following tables (Table 2 and 3) are adapted from data published in Paper I and displays characteristics from the controlled studies which were included in this study.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Medication</th>
<th>Measures</th>
<th>Results</th>
</tr>
</thead>
</table>
| Rösler et al. | Methylphenidate extended release (MPH ER) and MPH immediate release (MPH IR) | **Primary outcome:**
Response: 30% reduction WRAADDSa score | 61% responders receiving MPH ER versus 42% responders in the placebo group. Completers 69%. Premature termination (31%); 24% MPH ER versus 43% placebo. Number needed to treat statistics (NNT) was 6 |
| Rösler et al. | #Same trial above | **Primary outcome:**
WRAADDS; reduction of EDS (Emotional Dysregulation Scale, observer rated, 10 items from) | MPH-ER superior to placebo reducing emotional symptoms on EDS and ELS, significant from week 5, Cohen’s d effect size 0.3 |
| Biederman et al. | Osmotic Release Oral System MPH (OROS MPH) | **Primary outcome:**
CGI-I: Much or very much approved (CGI-I≤2), and AISRSc reduction > 30% | Phase 1; OROS MPH group 62% responders, versus placebo responders 37%. Phase 2; Rate of completers did not differ, OROS MPH responders were more likely to drop out of adverse effects, placebo responders by loss of effect. Phase 3; OROS MPH responders who completed phase 2, randomized for a 4-week, placebo controlled discontinuation: The time by treatment interaction for AISRS was statistically significant. Relapse-rate did not differ (18% in both groups) |
| Adler et al. | Atomoxetine (ATX) | **Primary outcome:**
AISRS reduction from baseline | Mean AISRS total scores for ATX decreased from 38.2 at baseline to 21.4 at the 6-month end point. Placebo from 38.6 to 25.8. Completers: (38%) patients randomized to ATX, (45%) patients randomized to placebo completed the study |
| Young et al. | ATX | **Primary outcome:**
CAARS-Inv:SV, Response: 25% decrease on CAARS-Inv:SV | CAARS-Inv:SV Total score reduction was greater with ATX over placebo at 12 weeks (-14.3 vs -10.1) and 24 weeks (-16.4 vs -8.6; effect size, 0.6). Response: greater for ATX (68%) than placebo (42%) at 24 weeks NNT was 4 |

a. The Wender-Reimherr Adult Attention Deficit Disorder Scale (WRAADDS)
c. The the Adult ADHD Investigator Symptom Rating Scale (AISRS)
<table>
<thead>
<tr>
<th>Authors</th>
<th>Medication</th>
<th>Measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginsberg & Lindefors</td>
<td>Osmotic Release Oral System Methylphenidate (OROS MPH)</td>
<td>Change in CAARS-O:SV<sup>a</sup> Adult ADHD Self-Report Scale (ASRS)<sup>b</sup> Clinical Global Impression of Severity (CGI-S) Global Assessment of Functioning (GAF)</td>
<td>Improved ADHD symptoms (Cohen's d effect size, 2.2). Response (30% decrease of CAARS-O:SV at week 5); 87% responded to OROS MPH compared with 0% for placebo; ASRS, CGI and GAF improved during open-label extension. All completed. NNT was 1.1</td>
</tr>
<tr>
<td>Buitelaar et al. (2011)</td>
<td>OROS MPH</td>
<td>CAARS:O-SV<sup>a</sup> band CGI-S CAARS-SSDS Sheehan Disability Scale</td>
<td>Mean CAARS:O-SV score decreased 1.9 from baseline. Small statistically significant improvements observed for CAARS-S, CGI-S and SDS. Completers: 63%</td>
</tr>
<tr>
<td>Marchant et al. (2010)</td>
<td>OROS MPH, WRAADDS defined sub-groups; (ADHD) alone, emotional dys-regulation (ADHD+ED), and plus oppositional defiant disorder (ODD). ADHD-Rating Scale (ADHD-RS)<sup>c</sup>. Personality disorder PD)</td>
<td>Maintained improvement on all 3 WRAADDS-defined dimensions; attention+ disorganization by 61%, hyperactivity-impulsivity by 60%, emotional dysregulation 66% for all subgroups. ADHD+ED+ODD group showed most long-term improvement on social maladjustment. PD patients were less likely to complete or show improvement. Completers of open-label phase: 44%</td>
<td></td>
</tr>
<tr>
<td>Wender et al. (2011)</td>
<td>Immediate release MPH (IR MPH)</td>
<td>Respons: 50% reduction of observer rated WRAADDS. Clinical Global Impression of Improvement (CGI-I) Global Assessment of Functioning (GAF)</td>
<td>In the double blind trial more subjects in IR-MPH group responded (74%) versus placebo (21%). During open-label trial, symptom severity decreased 80% from baseline, WSAS decreased > 50% in all subscales indicating improvement. Average GAF improved significantly. Completers: 73%</td>
</tr>
<tr>
<td>Adler et al. (2009)</td>
<td>Dex-MPH extended release (dMPH ER)</td>
<td>ADHD-RS<sup>d</sup> Proportion of responders on CGI-I</td>
<td>60% completed. Mean improvement on ADHD-RS (-10.2) switching from placebo to d-MPH-ER, and (-8.4) for they who maintained on d-MPH-ER. Respective CGI-I responder rates were 95.0% and 95.1%</td>
</tr>
<tr>
<td>Biederman et al. (2005)</td>
<td>Mixed amphetamine salts extended release (MAS XR)</td>
<td>ADHD-RS-IV<sup>e</sup> Safety assessments (adverse events, laboratory assessments, and monitoring of vital signs)</td>
<td>ADHD symptoms significantly improved from baseline in mean ADHD-RS-IV total scores (-7.2 unit points); this was sustained for up to 24 months.</td>
</tr>
<tr>
<td>Weisler et</td>
<td>MAS XR</td>
<td>Resting sitting diastolic blood pressure (BP) and</td>
<td>Mean change in diastolic BP (1.3 mmHg), systolic BP (2.3 mmHg) and pulse</td>
</tr>
<tr>
<td>Authors and Year</td>
<td>Study Medication</td>
<td>Methodology</td>
<td>Findings</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>al. (2005)</td>
<td>systolic BP, and pulse at baseline, and weekly, then monthly. ECG</td>
<td>(2.1 bpm) were small. On ECG, QTc (corrected by Bazett’s formula) increased 7.2 msec observed at 24 months</td>
<td></td>
</tr>
<tr>
<td>Ginsberg et al. (2011)</td>
<td>Lisdex-amphetamine-dimesylate (LDX)</td>
<td>Clinical response according to stratification of severity (CGI-S = 4, 5, and (\geq 6), respectively): 79%, 84%, and 88%. Symptomatic remission criteria by 64%, 65%, and 72%. Increased mean change of ADHD symptoms with greater baseline symptom severity (5,6). Completers: 55%</td>
<td></td>
</tr>
<tr>
<td>Adler et al. (2005)</td>
<td>Atomoxetine (ATX)</td>
<td>CAARS-Inv:SV total ADHD symptom score.</td>
<td>Significant improvement on ATX, mean CAARS-Inv:SV total ADHD symptom scores decreasing 33.2% from 29.2 (baseline of open-label therapy) to 19.5 (endpoint of open-label therapy)</td>
</tr>
<tr>
<td>Adler et al. (2008)</td>
<td>ATX</td>
<td>Change of CAARS-Inv:SVb Total ADHD Symptom scores Sheehan Disability Scale</td>
<td>CAARS-Inv:SV Total ADHD Symptom scores decreased 30.2% ((p < 0.001)) during treatment. Significant decreases for the secondary efficacy measures, including the Sheehan Disability Scale Total score, improved 25.3%. Completers: 18%</td>
</tr>
<tr>
<td>Marchant et al. (2011)</td>
<td>ATX</td>
<td>WRAADDS, CAARS-Inv:SV, Response CGI-S score (\leq 3) last visit</td>
<td>Previously responders from the RCT phase achieved maximum response after 8 weeks of open-label medication, but others continued to improve for 36 weeks. During open-label treatment 39% percent of ATX double-blind non-responders became responders. Completers: 18%</td>
</tr>
</tbody>
</table>

b. The Adult ADHD Self-Report Scale version 1.1 (ASRSv1.1)
c. The Wender-Reimherr Adult Attention Deficit Disorder Scale (WRAADDS)
d. The ADHD Rating Scale IV (ADHD-RS-IV)
3.2. Educational failure and long-term work disability (Paper II)

1) Whether the number of childhood ADHD symptoms and severity of symptoms are significantly associated with lower levels of education and long-term work disability in treatment naïve adults with ADHD?

High levels of ADHD symptom severity in childhood measured by WURS 25 (high severity score \geq 70) were significantly related to shorter duration of basic education and dropping out of high school (odds ratio = 3.0). Also, higher numbers of hyperactive-impulsive symptoms in childhood were significantly related to interrupted schooling (by each symptom criterion odds ratio = 1.2). Work status was hardly related to differences in ADHD characteristics in childhood.

2) Whether observed associations are moderated by persisting ADHD symptoms in adulthood, gender and comorbidity?

Fifty-six percent of the sample had not completed secondary school equivalent to high school, and no significant difference between the sexes was observed. However, statistically significant more males (53%) than females (36%) were in paid work or attending ordinary studies ($p = 0.009$), and more females (58%) than males (41%) had disability or rehabilitation pension ($p = 0.005$). After adjusting for age and gender, persisting high levels of ADHD inattention-symptoms in adulthood (odds ratio = 2.5), and number of adult comorbid disorders (odds ratio = 1.6) were all significantly associated with long-term work disability.

3.3. Effectiveness of one-year medical treatment (Paper III)

1) How is the effectiveness including tolerability after one year of drug treatment of previously drug-naïve adult ADHD patients, with methylphenidate being the first-line medication?

Among the 250 patients who started with medication, 232 (93%) completed examination at the 12-month follow-up, and 70% ($n = 163$) remained on medication, mostly on methylphenidate (80%). Those patients continued on any ADHD medication had a
statistically significant improvement of primary and secondary outcome measures at one year follow-up compared to their non-medicated baseline. Those who discontinued medication, also experienced statistically significant improvements, but to a lesser degree (Figure 1).

Comparing primary outcomes of those on medication to those off at one-year follow up, a significantly greater improvements in global symptoms and functions by the GAF-S and GAF-F (median 20% versus 2%, and p < 0.001, and 18% versus 6%, p < 0.001, respectively) were found.

Compared with patients who discontinued medication, those still on medication at 12-month follow-up had greater proportions of reductions in ASRS-scores (median 39%, versus 13%, p < 0.001), and significant and corresponding reductions in both adult inattention and hyperactivity/impulsivity symptoms were observed (median 39%, versus 13%, p < 0.001, and median 39%, versus 13%, p < 0.001 respectively). Corresponding findings were reported on secondary outcomes, such as mental distress by the GSI measure (SCL-90-R mean values, 46% versus 23%, p < 0.007), and higher responder rate of the investigator rated CGI-I by a priori response definition of the values of much or very much improved (CGI-I ≤ 2) (median 87% versus 3%, p < 0.001)

Frequencies of adverse effects were generally low. Of the 69 patients (28%, 69/250) who had discontinued medical treatment before 12- month follow-up, 31 (12%) terminated due to side-effects. Nine had to stop medication because of elevated blood pressure, and notably, all of these had a borderline high level at baseline. No serious adverse effects occurred, and there was no significant prolongation in electrocardiographical QT time.

2) Are outcomes moderated by age, gender, dosage, adverse effects, or comorbidity?

Longitudinal analyses showed significant associations between sustained improvement and being on medication at 12 month follow-up (Figure 1). Conversely, mental comorbidity and adverse effects were related to significantly lower effectiveness and more frequent termination of medication before 12 month follow-up. With the applied titration algorithm, higher dosage of medication over time (cumulative dose) was associated with greater improvement on the primary outcome measures (p < 0.001).
Figure 1. Longitudinal ADHD symptom outcome stratified by medication, gender and comorbid depression

Data from Paper III, outcome of mean Adult ADHD Self-Report Scale (ASRS) total score paneled by group of adherence to medication, by gender and by depressive episode last year before admission. The never-medicated group (n=20): patients discontinued MPH-treatment within first six-week follow-up, and never started up with any ADHD-medication. The medicated group (n=140): patients used ADHD-medication at every follow-up visit.
4. Discussion

4.1. Methodological issues

4.1.1 Methods of the systematic review (Paper I)

The review was primarily planned to be performed by a systematic search procedure, to include all relevant RCT studies or prospective controlled studies of ADHD medication of adult patients with long-term (≥ 24 weeks) duration. We soon realized that very few RCTs had been conducted, and that a quantitative meta-analysis methodically was not suitable. However, data to compare number needed to treat (NNT) could be estimated for some of the studies.

Our sampling procedure of the RCTs and open label extension studies from RCTs included a systematically retrieved sample within the applied dates and chosen bibliometric terms for the search. The initial broad search in several large databases and further systematical restricting procedures, intended to ensure that all relevant papers were included. By use of synonyms or overlapping words as MeSH terms, it is less likely that we have missed any relevant studies from sample of the study. However, regarding further selection of open-label prospective studies without an initial controlled phase, the risk for missing studies is more present due to MeSH terms in use can be more varied. We did not perform search manually based on the reference lists of papers already identified.

The retrospective, or large epidemiological studies that we also included were not result of the systematic selection procedures, as they were added to enlighten and discuss some clinical important issues not examined in the controlled and prospective studies. This part of the Paper I is therefore unsystematic retrieved, though, all these studies too, were included in the initial broad search, before any restrictions were made. The authors’ professional knowledge of the literature of the field contributed partially to this subsequent selection.

Two of the authors perused all the abstracts from the initial electronic search, and excluded papers not meeting the inclusion criteria (see section 2.4.1). For the sake of reliability they compared their of lists of included papers, and discussed disagreements, and the other authors were consulted in case of disagreements.
4.1.2 Methods of the clinical studies (Paper II and III)

Design

Study II and III were performed on the same patient sample, but had different designs. Study II, with the aim to investigate associations between adult functional outcomes, and childhood ADHD symptoms, had to examine retrospectively childhood characteristics, and in that way to rely on the memory of the informants. Most studies on adult ADHD in the literature are cross-sectional or retrospective, and few studies have compared adult impairment to childhood symptoms or characteristics. The retrospective design does not allow us to draw general inferences about the consequences of childhood ADHD symptomatology for function in adulthood. Our prospective and consecutive recruitment procedure precluded selection bias of patients. Recall biases of the patients were reduced by conferring their information with historical data and collateral data sources.

Study III was conducted as a clinical cohort prospective observational study with open label design without control group. However, unlike pure naturalistic designs, some standardization was performed to facilitate examinations by comparisons of time and group-related factors. Standardization implied that all patients started with the same medication, applied the same titration procedure for the first six weeks, and all patients were followed up according to a priori scheduled visits by repeated use of measures that were both investigator-rated and self-rated. Similar standardizing of the assessment and treatment implemented in the study design are also described in two other observational studies (Adler et al. 2011, Weiss et al. 2010) to reduce confounding variance and simplify interpretation of effectiveness.

According to our design longitudinal mixed model regression analyses were required to explore models of associated and confounding factors related to our outcome variables. Deciding upon one-year as the final follow-up provided a common end-point for measures of individual changes from pre-treatment, and between groups by different characteristics. However, the uncontrolled open-label design has clear methodological limitations like inferences of causality cannot be drawn. A controlled design with placebo group would eliminate confounding of the main symptomatic relief or functional improvement outcomes on a specific treatment regime, since confounders would be randomly distributed between the actively treated and the placebo patients. Conducting a long-term RCT however, would be too demanding with regards to expenses of masking patients and investigators at repeated
measurements over a long time period, and not at least it would challenge ethical issues of being exposed to long-term placebo with potential lack of efficacy.

Patient sample and referral practice

We conducted a simple power analysis assuming between 50% and 70% patients completing one year treatment based on reports from a national project on trying out psychostimulants for adults (Aanonsen et al. 2005). We considered about 150 patients to be sufficient for most analyses between two groups \((n = 75 \times 2)\), since with \(p < 0.05\), and statistical power (beta) of 0.80, effect sizes of \(\geq 0.30\) would represent clinical significant differences (Cohen 1988).

To end up with about \(n = 150\) patients completing the effectiveness study (Paper III), we had to include about 250 patients at baseline due to the expected attrition of 40% of the patients during the one-year duration of the study.

However, more patients than expected completed, improving the statistical power of Study III. The sizes of the samples of studies II and III are large compared to corresponding studies in the literature. To the best of our knowledge Study III comprised the largest single-site clinical cohort prospective study on medication-naïve adults, evaluating long-term effectiveness of ADHD medication.

These samples included adults consecutively referred by their GPs or primary referral outpatient psychiatric clinics. Most likely more than 90% of all help-seeking adults suspected with ADHD from our catchment area are referred to our specialized outpatient service, since diagnosis and initiation of ADHD medication was allocated to this service by the regional health trust. Due to this recruitment procedure the patients can be considered as without selection bias from our catchment area.

The reason for referral was relate to recognition of some kind of impairment or suffering from ADHD-like symptoms or being identified with behavioral problems known to be associated with ADHD. In that way referrals would reflect knowledge about ADHD in the general population, and among the GPs of the catchment area, when it comes to patients suffering from ADHD alone. Patients with conspicuous mental comorbidities were expected to be referred from general psychiatric outclinics. In our sample about half of the patients were referred from the specialist health care. Concerning frequency of comorbidities, this could lead to a selection bias due to those with comorbid mental disorders may more likely be referred like Berkson’s Fallacy (Berkson 1946).
Diagnosis and measures of symptoms

The reliability and validity of the adult ADHD diagnoses were addressed by the two board certified psychiatrists who both were quite experienced with the ADHD patient group, and who had worked together at the outpatient clinic for some time before the study start. They also met regularly during the study to discuss diagnostics and their approaching of the multistage and multisource procedure described in the above section (2.5.1). In a pilot study prior to initiation of the inclusion period, they achieved satisfactory diagnostic agreement indicating satisfactory reliability of their independent diagnostics.

Explaining validity and nature of psychiatric diagnosis in general (Phillips et al. 2012), and the ADHD diagnosis in particular (Asherson et al. 2010, Moncrieff & Timimi 2010, Kooij et al. 2005, Kooij et al. 2010), is considered beyond the scope of this thesis. Our diagnostic procedures to achieve optimal diagnostic agreement between the investigators correspond to that recommended elsewhere for clinical studies of adult ADHD (Barkley 2008, Haavik et al. 2010, Kooij & Francken 2010). An achieved overall Cohen’s kappa coefficient (κ) about 0.8 of diagnosis is considered a more robust measure than simple 80 percent agreement calculation, since it takes into account the agreement occurring merely by chance. Some quarters have expressed criticism over κ's tendency to take the observed categories' frequencies as given, which may lead to underestimating agreement for a category that is commonly used, and therefore κ may be a conservative measure of reliability (Strijbos et al. 2006).

Number of diagnostic symptom criteria from the Diagnostic Interview for ADHD in adults, second edition (DIVA 2.0) were counted and correlated with the outcome measures in Study II. In this way we got an investigator-rated numerical measure of ADHD symptom dimensions both in the childhood and adulthood. However, this evaluation is also retrospectively based with regards to the childhood ADHD criteria, and they may be biased by difficulties of both patients and relatives concerning recall of childhood symptoms and dysfunction.

Several psychometric instruments were applied. We chose global assessment scales for the investigator-rated outcomes in Study III. This was partly due to lack of an ADHD investigator-based rating scales in Norwegian at that time, but also due to limited resources available of the psychiatrists to perform such interviews at repeated sessions.

The Global Assessment of Functioning scales (split GAF) were chosen over the Clinical Global Impressions-Improvement scale (CGI-I) as primary outcome, since we
achieved somewhat greater inter-rater-reliability (0.83 versus 0.78) on the continuous scores, and GAF also indicated functional changes. However, as a secondary outcome in our study, the CGI-I was used for defining the responder rate as commonly done in psychopharmacological studies (Biederman et al. 2010a, Rösler et al. 2009).

Patient-rated scales were used both for assessment of childhood ADHD symptoms severity (WURS 25), and for current ADHD symptoms (ASRSv1.1) (Section 2.5.3). These scales were not used for diagnostic purposes, but for continuous rating of the levels of ADHD symptoms used for correlations and regression analyses. There are methodological issues inherent in self-ratings concerning variance due to subjective attribution and references. In Study II, level of childhood ADHD severity measured by the WURS 25 correlated with levels of self-rated current ADHD symptoms by the ASRS (Spearman’s rho 0.51, p < 0.001), possibly partially due to attribution and recall. However, in Study III, the assessed changes in the ASRS by repeated measures were expected to be less influenced by such biases, assumed this kind of bias was most expressed by individual variance of baseline levels.

Treatment issues

In Study III all patients were subjected to the same treatment algorithm first six weeks. Thereafter individual titration and shift of medications were possible, though only if methylphenidate was considered to be not tolerated or ineffective. In this way, all the patients tried methylphenidate initially, and a selected group of patients additionally tried one or more of the other drugs; amphetamine or atomoxetine. Hence, we cannot compare the effectiveness of these drugs, since these selected patients assigned to second choice drugs presumably represent different characteristics of tolerability and responder capability than those continuing on methylphenidate. Also decisions to shift drug to atomoxetine or amphetamine was taken on clinical judgment emphasizing various characteristics; implying Non-random assignment of second medication.

Though, it was not the aim of the study to compare effectiveness between ADHD drugs, we rather wanted to explore effectiveness of a current clinical applied ADHD drug treatment regime; starting up with methylphenidate, and made changes of medication under certain predefined conditions such as lack of efficacy or intolerable adverse effects. It may be argued that this medication algorithm makes it difficult to interpret outcomes of single drugs. If one can change dosages, or shift medication along the course, what treatment represents the final outcome? To simplify analysis, we presented stratified courses by different groups of
patients in Paper III. I should also underline that associations found in the longitudinal analyses cannot be interpreted as causal mechanisms. With our uncontrolled design, we are limited to discussions of estimates of possible causal associations and probable confounding factors.

4.2. Discussion of the main findings

4.2.1. The review of long-term medication studies (Paper I)

In the following section of discussion, our main findings of the research questions are discussed in light of results from other relevant studies, emphasizing how our findings may add to the literature, and with discussion of notable strengths and limitations of these results.

1) How many RCTs and open label prospective studies with duration 24 weeks or more were reported based on our search strategy?

Long-term have been defined in our review, but search was performed initially by the key words without specifying time restriction of these terms. We identified only four separate RCTs with duration \(\geq 24 \) weeks, and additionally 10 initially short-term RCTs which were pursued by an open-label extension of the observation period for a total duration of \(\geq 24 \) weeks. In eight studies medication was methylphenidate, in four atomoxetine and in two amphetamine. Other drugs for ADHD are not found with such studies in that long term perspective. We also included 18 treatment studies with naturalistic or cross-sectional design reporting other outcome measures or safety.

At the time of the planning of this study, few reviews had reviewed long-term treatment studies (Faraone & Glatt 2010), probably due to the very limited number of such studies performed. The small amount of long-term RCTs found, may be explained by the ethical and financial obstacles with conducting longer randomized placebo controlled studies. Current stimulant drugs of treatment have been in use for many years, and given the established efficacy and safety profile in short-term studies of ADHD medications, it would be hard to assume that ethical committees would approve the use of placebo for longer terms. However this would be the gold standard design to prove efficacy.
To our knowledge this study of literature is unique in addressing questions of long-term efficacy of ADHD drug treatment of adult patients, and performing an updated systematic review of studies on effectiveness. Most of the articles retrieved were open-label treatment studies, but some of the naturalistic studies prospectively followed adolescents over many years and including young adulthood (Biederman et al. 2009, Powell et al. 2011, Biederman et al. 2008a).

Strength and limitations concerning collecting the articles: Although the literature search was carried out using several large electronic databases and by overlapping MeSH terms and text words, we cannot be sure that all relevant open label studies were identified. It is a limitation that we did not perform search manually on the reference lists of the papers found. However, it is unlikely that we have missed any published long-term RCT study, since they are few, and RCT or trial then would be obligate MeSH terms.

The question may be raised whether performed studies of showing lack of efficacy of drug treatment have been published. All of the RCTs and RCT extension studies with commercial sponsors in the review (Table 2 and 3), are recently published after the requirements of mandatory registration of clinical trials became obligatory in 2005 (Zarin et al. 2005). However, it is hard to make any reasonable estimate of proportion of unpublished negative studies on this field, and we have not performed any search in the clinical trial registry to tentatively address this question. In contrast to the RCTs, the naturalistic studies do not have mandatory registration, and may such not be controlled for publication bias. Unlike most RCTs, naturalistic studies more frequently have non-commercial funding sources, and address correlations rather than causal relationships. Therefore less is at stake also by publishing negative results.

2) What are the characteristics of these studies regarding location, attrition, sample size, gender, age and comorbidity?

The majority of the controlled and extension studies were performed in United States (10/15). The RCTs had fairly large sample size at inclusion with between 200 – 500 patients enrolled. However, high attrition rates among both drug-treated and placebo-treated patients (drop-out rates from 30 to 70%), lead to some difficulty with generalizing to the entire patient population (low external validity). Both sexes were represented in the study samples, and mean age ranged between 35 and 40 years, similar to real-life clinical populations.
However, comorbid mental disorders were exclusion criteria in most of the studies with initial RCT and taking into account that in a clinical setting most patients have at least one comorbid mental disorder, this raises unresolved questions about clinical validity of the RCT efficacy findings. These characteristics of location, and restriction of comorbidities are similar to characteristics of shorter term RCT studies (Santosh et al. 2011, Torgersen et al. 2008, Faraone & Glatt 2010), as would be generally expected from studies with a RCT start. It should be relevant to perform more studies in Europe, try to limit attrition, and also includ psychiatric comorbidity.

3) How is effectiveness in a long-term perspective?

All of the RCTs reported that ADHD medications were significantly more efficacious than placebo (Table 2), and in the RCTs with open label extension, the efficacy demonstrated during the placebo-controlled phase, was either maintained or further improved during the extended follow-up period (Table 3).

As indicated in the number needed to treat (NNT) statistics from the review (Table 2 and 3), between 4 and 6 patients need to be treated to achieve one good, medication-related, long-term treatment responder. However, the strict exclusion criteria adopted in the majority of RCTs make it difficult to generalize the results to the general clinical population, where comorbid mental disorders are the rule rather than the exception.

The naturalistic studies were found with positive correlation between treatment with central stimulants and lower frequencies of comorbid mental disorders, improved a positive educational development and employed in adulthood, and older age at treatment initiation was associated with poorer occupational outcomes, indicating benefit of early recognition and treatment. Several naturalistic studies found no link between prior pharmacotherapy for ADHD and subsequent development of substance use disorders. Findings in the open-labeled long term studies were in line with results reported in recent reviews of shorter duration studies (Torgersen et al. 2008).

Summing up the results from several studies revealed evidence for some long-term benefit of sustainment of ADHD drug treatment. High drop-out rates and low levels of comorbidity in the RCT studies limit their clinical relevance. There is also lack of head-to-head comparing trials between the drugs, so the question about their relative effectiveness is not resolved. In spite of these limitations, and with the relevant literature of long-term drug treatment primarily naturalistic, I suggest that the pharmacological treatment of ADHD
primarily leads to less ADHD symptoms, and secondly to higher educational levels and occupational status, fewer accidents, and less delinquency. This should support the recommendations of medical treatment in the guidelines concerning adult ADHD (Cornforth et al. 2010, Hazell 2004, Barkley et al. 2005, Peterson et al. 2008, Banaschewski et al. 2006, Kooij et al. 2010, Modesto-Lowe et al. 2012).

4) How are medications tolerated, and to what degree are tolerability, adverse effects and safety reported?

In RCTs and extension studies, the medication was well tolerated by most patients, and most adverse effects occurred during the initial titration phase. As expected adrenergic related effects such as decreased appetite, nausea, palpitations, mucosal dryness and dizziness were the adverse effects most frequent reported. There was also some risk for increases in nervousness, irritability and sleep disturbance, the most common psychological adverse effects. Most frequent short-term adverse effects are well understood due to the adrenergic effects of the stimulant compounds (Leonard et al. 2004) and atomoxetine (Arcieri et al. 2012), however, long term risk of such alterations are less studied.

It was reassuring that large epidemiologic studies of adverse effects of persons using central stimulants did not report any significant associations with increased risk for serious cardiovascular events compared to none-users (Cooper et al. 2011, Habel et al. 2011, Schelleman et al. 2012).

The RCTs and extension studies had methodological limitations. Most commonly they ran only for a short time span of 10-12 weeks in order to test efficacy, and we found only four studies lasting more than 24 weeks. Thus, the RCTs phase scarcely gives information about outcomes or safety in a long-term perspective. Although large cross-sectional epidemiological studies showed no increased risks for cardiovascular disease or death, few long term studies have examined safety, and there is need for larger scale studies over time (Murray et al. 2013).

While initiation of psychostimulants was not associated with elevated risk of serious cardiovascular events large epidemiological studies found, one recent study published after our review on amphetamines or atomoxetine could not exclude a modest elevated risks for sudden death or ventricular arrhythmia (Schelleman et al. 2013). Therefore it is still reasonable to advice that these medications should not be used with patients having pre-existing cardiac abnormalities, and cardiovascular parameters should be monitored in stimulant-treated adults with ADHD, especially those with borderline abnormal cardiovascular signs.
More recently, and after our review was submitted, some studies with retrospective design addressing issues of longer term treatment duration have been published on Norwegian samples of adult ADHD patients (Gjervan et al. 2012, Torgersen et al. 2013, Torgersen et al. 2012, Halmoy et al. 2009, Lensing et al. 2013). Torgersen et al. (2012) conducted a retrospective study of predictors for long treatment duration (≥ 3 years) in a sample of adult ADHD patients utilizing data from medical records ($n = 117$). The median duration of central stimulant treatment was 33 months, and use of extended-release formulations of methylphenidate predicted positively long treatment duration, whereas baseline antisocial personality disorder and comorbid substance use disorder were related to shorter duration of treatment.

In another Norwegian study performed by a retrospective questionnaire survey, Lensing et al. 2013 (Lensing et al. 2013) reported favourable outcome for 21% of the ever-treated respondents at a follow-up, with a mean observation time of 4.5 years. Those who had received treatment for more than 24 months reported larger improvements than those with shorter treatment duration. Although these studies have limitations due to their retrospective design, they add to the literature on beneficial outcome associated with continuation of ADHD medication in adult patients as well.

Despite the growing literature about the long-term effects of ADHD medications (Paper I), several issues require further study. Notably, no generally accepted definition exists for what is regarded as a long-term study, as this will obviously depend on the condition that is being treated. Previously, at the time when ADHD was considered a self-limiting developmental disorder of childhood, studies of many years duration were considered less relevant. In our review, we adopted a practical compromise, including studies down to 24 weeks of duration, as we otherwise would have been left with very little data from RCTs.

4.2.2. Functional outcomes in previously untreated ADHD adults (Paper II)

1) Whether the number of childhood ADHD symptoms and severity of symptoms, are significantly associated with lower levels of education and long-term work disability in treatment naïve adults with ADHD?

Main findings and comparison with literature
High levels of ADHD symptom severity in childhood measured by the WURS and higher numbers of hyperactive-impulsive symptoms in childhood measured by the DIVA were significantly related to shorter duration of basic education and dropping out of high school.
No significant sex differences were observed concerning these educational outcomes. Concerning long term work disability, neither the childhood ADHD symptom severity nor the number of ADHD symptom criteria met in childhood, showed any significant relationships to work status in adulthood.

Consistent with our findings, longitudinal studies of children with ADHD have found more severe ADHD symptoms associated with poorer educational attainment (Powers et al. 2008, Hechtman et al. 1984), and hyperactive-impulsive symptoms in particular (Barkley et al. 1990). A population-based retrospective study of ADHD compared to healthy controls, also has reported having a ADHD diagnosis in childhood was associated with poor long-term school outcomes including more drop-outs (Barbaresi et al. 2007).

An explanation of this consistent finding may be that youths with high levels of hyperactive-impulsive symptoms may either be more prone to experience negative feedback in school due to their disruptive behavior, or to make impulsive decisions about discontinuation. Some studies have reported that comorbid conduct disorder was the best predictor of high school dropout (Barkley et al. 1990, Breslau et al. 2011). A longitudinal study, however, did not find such an association (Trampush et al. 2009), but differences concerning IQ level, reading ability, socioeconomic status, marijuana use, and limited parental contact significantly differentiated school-dropouts from graduates.

In our study (Paper II), when adjusted for occurrence of antisocial-conduct behavior (based on the MINI interview), the number of hyperactive-impulsive childhood symptoms remained a statistically significant predictor of high school drop-out, and this may indicate that school interruption is to some degree related to hyperactive-impulsive symptoms.

Almost twice as many patients in our total sample (56%) as in the general Norwegian population (33%) had not completed high school. Compared with two other Norwegian studies, patients in our sample was lower educated that the 48% reported by Gjervan et al. (2012) and 29% observed by Halmøy et. al (2009). Longitudinal studies of children with follow-up into early youth and young adulthood have found similar adverse educational outcomes associated with the severity of childhood ADHD symptoms (Barbaresi et al. 2007, Barkley et al. 1990).

Numbers of childhood inattention and hyperactivity-impulsivity symptoms were examined separately. When statistically significant associations by univariate analyses were found, these factors were included in an adjusted analysis, and hence the described findings (Paper II). Prior to our study, reports of adult outcomes have examined associations to adult
subtype categories and scores of ADHD rating scales in adulthood, but not to childhood.

Our study was able to correlate the severity of childhood ADHD symptoms and a high number of childhood hyperactive-impulsive symptoms with school dropout and interrupted education. We also noted that adult inattentive symptoms were associated with occupational impairment and that adult comorbidity 'predicted' work disability. In contrast to prior literature with similar findings, our analyses were dimensional as per current DSM trends. A dimensional approach to symptoms and behaviors rather than categorical, was useful to elucidate aspects of ADHD such more like a spectrum disorder.

Although, we found that childhood symptoms and characteristics were related to less favorable educational outcomes, these factors seemed weekly to influence on the other outcome of being out of work last year. The lack of significant correlations between level of childhood symptoms and being one-year out of work, suggests that differences in employment and long term work disability among ADHD adults are not directly related to differences in childhood ADHD or educational deficits.

Weak significant correlations between specific ADHD symptoms and impairment have been reported previously. In a study based on two longitudinal case-control study samples (Gordon et al. 2006), measures based on symptoms accounted for less than 10% of the variance in measures of impairment. Another more recent study based on a follow-up of ADHD children sample has reported statistically significant relationships between childhood ADHD symptoms and impairment in adulthood, when impairment in ADHD tied functional domains was evaluated (Mannuzza et al. 2011). In this study the measure of impairment was not limited to behavior in any particular area as education or work; instead a clinical evaluation of impairment was rated according to answers to the interview questions: “Have [SYMPTOMS OF ADHD] led to any difficulties at home, at work, or with other people? …For example, have these behaviors diminished your performance at work, or interfered with doing things at home, or affected your relationships with friends?” These impairments were assumed to be more closely tied to the ADHD than a global index of functioning, but may be influenced by the patient attribution.

In our Study II, we applied defined impairment measures of educational and vocational outcomes not supposed to be directly influenced by patient attribution. Requirements of impairment are integrated in the DSM-IV-TR ADHD syndrome (by criterion C and D) (Table 1), but regardless of these, we did not simply ask the question are these two domains of education or work impaired in adult ADHD? Rather, we assessed whether this
level of disability in adulthood was related to number of childhood criteria met, and that is, to our knowledge, a novel contribution to literature.

Implications

Our findings of educational and vocational impairments in adult patients diagnosed with ADHD correspond with previously results from follow-ups of children with ADHD into youth and young adulthood. Less was known about childhood factors in previous non-medicated adult patients diagnosed in adulthood, and our examination of dimensional relationship between childhood ADHD symptoms and adult functional outcomes adds to the literature on ADHD adults. Our findings indicate persistence of particularly impairing inattentive symptoms of the ADHD syndrome in adulthood.

It was surprising that low degree of education did not correlate significantly with long-term work disability in our study, since education can be a prerequisite for obtaining employment. In the Paper II, education is discussed being of less importance in our sample; both patients with low and high educational achievements may become work disabled for other reasons, as well. Also, some factors that could have compensated for lack of education are suggested (workplace facilitations and open labor), and these hypotheses could be further studied.

Limitations

Limitations by use of retrospective determination of childhood symptoms, and the relatively crude categorical outcome measures should be considered. Problems with retrospective diagnostics and recall bias are discussed above (Section 4.1.2).

The defined categorical functional outcomes of *dropping-out of high-school* and *being out of work last year*, may be influenced by various conditions, not only ADHD behaviours. These outcomes also lack information about the mode of impairment of each patient; data that could be essential to understand impact of ADHD and other conditions on these outcomes. Furthermore, those patients with most hyperactivity-impulsivity in childhood related to interrupted schooling, were also most severe affected (had more symptoms and higher score on the WURS), and had accompanying high levels of inattentive symptoms as well. Intercorrelations between number of childhood inattention and hyperactivity-impulsivity symptoms made some difficulties to separation between these dimensional symptoms in the analyses.
2) Whether the observed associations are moderated by persisting ADHD symptoms in adulthood, gender and comorbidity?

Main findings and comparison with literature

A large percentage (56%) of our sample had not completed secondary school equivalent to high school, and no significant difference between the sexes was observed for this finding. Moreover, statistically significant more males than females were in paid work, and more females than males had disability or rehabilitation pension. Work status was not significantly related to differences in ADHD characteristics in childhood. However, adult number of inattentive symptoms (the DIVA), adult high levels of ADHD inattention-symptoms (the ASRS inattention subscale), and number of comorbid disorders (the MINI), were related to likelihood of being work disabled last year by logistic regression modeling.

It has previously been reported that hyperactive-impulsive symptoms decrease by age, while inattentive symptoms tend to persist into adulthood (Faraone et al. 2006a). In a cross-sectional and retrospective study Kessler et al. (Kessler et al. 2010) reported that inattentive symptoms were more persistent into adulthood than hyperactive-impulsive symptoms, and the strongest predictor of ADHD persistence into adulthood was childhood ADHD symptom severity. This could lead to more severely childhood affected individuals with inattentive impairments among the ADHD persistent adults, and do in fact correspond with our findings of more inattentive symptoms among the patients long-term out of work.

Logistic regression modeling, after adjusting for age and gender, showed an association between number of persistent inattentive symptoms (the DIVA) and corresponding adult high levels of ADHD inattention-symptoms (the ASRS), and the likelihood of being long term work disabled. The modeling also revealed a relationship between number of comorbid disorders and this likelihood of being work disabled last year. This could be interpreted as both adult ADHD inattentive symptoms and comorbidity contributed significantly to the functional impairment.

Our findings were consistent with report from another Norwegian study published after our study was started; Halmøy et al. (2009) which reported that comorbid substance abuse, depressive, or anxiety disorders in adulthood were significantly associated with being out of work. However, they found no statistically significant relationship with high frequencies of self-rated inattentive symptoms (ASRS), but reported increased risk for unemployment by belonging to the ADHD-combined subtype, though levels of inattentive
scores (ASRS) for the sub-type categories were not available from the paper. Gjervan et al (2012) in another study from Norway, found that higher current inattentiveness (ASRS) was significantly related to fewer days at work in adults with ADHD. In our Study II persistent inattentive symptoms both by self-rating (the ASRS) and investigator assessed behaviors (the DIVA) were related to long term work disability. This was in line with other reports stating that the inattentive and not the hyperactive-impulsive symptom cluster, is the most disabling aspect of adult ADHD (Sobanski et al. 2008, Stavro et al. 2007).

We found a weak but non-significant trend for possible association between educational failure and long term work disability. Halmøy et al. (2009) however, reported that lower level of education significantly predicted unemployment. These different findings may be explained partially by the fact that in our region at the time of the study, the level of unemployment was low implying a need for unskilled workers.

Other studies have reported higher as well as lower non-working rates (Able et al. 2007, Sobanski et al. 2008). In our sample almost twice as many women as men were fully out of work last year due to disability, and this difference remained statistically significant when adjusted for age and comorbidity. The same tendency, though not statistically significant, was found in two other Norwegian samples (Halmøy et al. 2009, Gjervan et al. 2012). This significant gender difference could indicate that females are more vulnerable than males to the disabling consequences of ADHD in a vocational context, or more prone to get work environments particularly less compatible with ADHD. This raises unresolved questions about unfavorable environmental work place factors, and indicates needs for counselling or facilitation, as well as it challenges for further research.

A large proportion of our sample also had other mental disorders (75%), and this is consistent with prevalences reported in other studies on adult ADHD (Torgersen et al. 2006). The total number of comorbid disorders did not differ significantly between the sexes, or between those who did and did not complete high-school. Adult comorbidity of mental disorders was significantly related to long-term work disability in our sample, independent of sex.

Several studies have shown more impaired functional outcomes in adolescents and young adults for patients with childhood ADHD with co-occurring conduct or substance use disorders in childhood compared to peer ADHD patients without such comorbidity (Hinshaw 1992, Hurtig et al. 2007, Mannuzza et al. 1993). Similar findings of greater adult impairment related to a broader spectrum of comorbidity in adulthood including anxiety and depression.
have previously been found for adults with ADHD (McGough et al. 2005, Mick et al. 2008, Weiss et al. 2010). Our results correspond with a significant literature showing that psychiatric morbidity in general is associated with work disability in adults (Lorant et al. 2003, Virtanen et al. 2011, Sareen et al. 2006). A significant proportion of the patients (71%) in our sample used or had used last year, a medication for anxiety or depression at admission, mostly antidepressants (> 90% of the drugs). The use of these medications was associated with long-term work disability. The most obvious explanation to this is that the patients using these medications have comorbid mental disorders that contribute to their work disability.

Contribution to literature and implications

Our findings emphasize the serious consequences of ADHD in childhood and adulthood in terms of functional outcomes such as school drop-out and long-term work disability. These findings may suggest that earlier recognition and intervention for ADHD and adequate treatment of comorbid mental disorders are of importance to improve the long-term outcomes for ADHD patients. Our dimensional approach revealed the importance of addressing inattentive symptoms in the treatment of adult ADHD, and calls for further research on work rehabilitation and adequate workplace measures to prevent long-term work disability.

Strength and limitations

The strengths and limitations of the prospectively included patient sample of treatment naïve, adult ADHD patients, representing a wide age-span, both sexes and comorbid mental disorders are discussed in the above section of general methodological issues (Section 4.1.2). Our findings should be considered within the limitations of the design and methods applied; it is primarily a combined cross-sectional and retrospectively designed study based on data from a clinical sample. Furthermore, investigators were not blind to the participants’ diagnostic status, which could have influenced their assessments.

Our findings of statistically significant associations do not imply causal relationships. Interpretations of relationships in the regression analyzes, imply reasonably theoretically overview of possible confounding factors. Adjusting for age and gender was a reasonable choice, but also problems with intercorrelation should be mentioned, due to limitations of implementation several inter-related factors in the model simultaneously.

We did not perform the analyses of the conventional DSM-IV ADHD subtype categories because the current DSM-IV methods for defining subtypes have been heavily
criticized for lack of stability over time (Lahey & Willcutt 2010)(see Section 1.3.). For this reason, we examined ADHD behavior symptoms using dimensional symptom scores (by the DIVA).

4.2.3. Outcomes following one year of drug treatment (Paper III)

1) How is the effectiveness including tolerability after one year of drug treatment of previously drug-naïve adult ADHD patients, with methylphenidate being the first-line medication?

Main findings and comparison with other studies

Above ninety percent of the patients completed examination at the 12- month follow-up, and many of these (70%) continued being medicated, mostly on methylphenidate (80%). Those patients who remained on any ADHD drug had a significant improvement of primary (the ASRS and the GAF) and secondary outcome measures (the CGI-I and the SCL-90) at one year follow-up compared to their not medicated baseline, and with significant greater improvement compared to those who discontinued medication (Figure 1). Furthermore, frequencies of adverse effects were generally low. Of the patients (28%) who had discontinued medical treatment before 12- month follow-up, just under half terminated due to side-effects (n = 31), and no serious adverse events were recorded.

The significant reduction of ADHD symptoms is consistent with published RCTs and extension studies on the long-term effectiveness of single ADHD drugs in more selected patient samples (Adler et al. 2009a, Adler et al. 2008, Biederman et al. 2010a, Rösler et al. 2009, Young et al. 2011). The improvements of global severity and function and the reduction of mental distress (GSI) also correspond well with broader outcomes found in studies exploring such characteristics (Wender et al. 2011, Weiss et al. 2010, Ginsberg & Lindefors 2012, Adler et al. 2009b).

Sustained and increasing improvement during the first year has also been reported previously for dexmethylphenidate and atomoxetine (Adler et al. 2009b, Marchant et al. 2011), and in that case our findings replicated this interesting course for a broader patient population and on a current drug regime. Notably, partly non-adherent patients in our study (Paper III) had effectiveness outcomes that were intermediate between the fully compliant and non-medicated groups. This may be explained by partial responses related to lower degree of
adherence, and indirectly support assumptions of long term effectiveness of current ADHD medication. Our results of 70% one-year completion on-medication are in line with the findings in another Nordic prospective observational study (Bejerot et al. 2010), and should support the assumption that many patients benefit from the ADHD drug treatment.

We observed no serious adverse effects corresponding to reports from studies cited in the review. Noteworthy, measures of cumulated adverse effects over time (the CADDRA) (Canadian ADHD Resource Alliance 2011) showed an inverse relationship with the effectiveness outcomes. Reasons for termination of medication included adverse effects, such as palpitations, mood instability, nausea, agitation, and anxiety. This fits well with other studies on safety and tolerability (Adler et al. 2011, Bejerot et al. 2010, Buitelaar et al. 2011), and may be expected from knowledge of the adrenergic effects of the pharmacological compounds used. Most patients experienced mild adverse effects, and less than half of those who discontinued medication did so due to adverse effects, and mostly terminating early. Still, the finding of nine patients with increase in blood pressure exceeding the safety limits, all of them with borderline elevated blood pressure at baseline, should be taken into account in clinical practice. Also several patients who continued on medication had slightly increased heart rate, and the long-term consequences of such persistent adrenergic effects are not known (Vitiello et al. 2012). We found no significant change in the ECGs, including QTc, following treatment, in line with another study on methylphenidate (Marchant et al. 2010). Though, we may expect such changes to be of low prevalence affecting particularly vulnerable patients. For this reason studies of larger samples should be conducted.

Implications

Though, our findings may be seen as replications of results from the previous small number of intermediate and one-year RCT-extension studies, our study complement such findings on a broader clinical sample, including comorbid patients and patients with various medication dosages and adherence, and to some extent our model adjusted for such confounding factors in treatment. In a specialized outpatient setting application of a current medication regime for ADHD adults was associated with long-term reduction of ADHD symptoms and improvement of function and mental distress among those who used the medication, and adverse effects were within expected incidences. These results may provide realistic guidance for clinicians with regard to medical treatment in everyday practice, and should supplement previous knowledge regarding the effectiveness of ADHD medication regimes.
Strength and limitations

This is a large single-site clinical cohort prospective study on medication-naïve adults, and the study was implemented in a specialized outpatient setting. Over ninety percent of the patients completed evaluation at one year follow-up, and about seventy percent out of these remained on medication. We were able to follow prospectively a large clinical cohort with ADHD adults, and with a low proportion of drop-outs, we achieved a clinical relevant basis for longitudinal analyzes.

Given the nature of open-label uncontrolled design, causal relationships between medication and outcome measures cannot be drawn. In the prospective observational study (Paper III) we have discussed the inherent limitations of using an open-label design. It is thereby possible that patients were inclined to overestimate treatment effectiveness. The blinding of previous assessments and responses to questionnaires are not considered to compensate fully for this bias. The applied medication regime, with a low proportion of patients using atomoxetine, also precluded comparisons of effectiveness between different drugs. However, we found that patients using atomoxetine as a second-line medication, if stimulants were not effective or tolerated, had a significantly higher responder-rate than those who discontinued drug treatment.

2) *Are outcomes moderated by age, gender, dosage, side-effects, or comorbidity?*

Main findings and comparison with other studies

The differences in effectiveness between being on and off medication appeared early on in treatment, with an overall increase during the follow-up visits, and higher dose of medication was associated with greater improvement, while adverse effects and comorbidities were related to less effectiveness (Paper III).

We found a greater improvement in ADHD symptoms for males than for females, in contrast to some other studies reporting no sex differences (Rosler et al. 2010, Wender et al. 2011), or even greater improvement for females on measures of emotional dysregulation (Marchant et al. 2010). However, we found no sex differences on the global GAF-measures or for mental distress, and adherence at endpoint did not differ between the sexes, similar to reports by a three- year retrospective study (Torgersen et al. 2012).

Comorbid anxiety and bipolar disorders were associated with less effectiveness adjusted for age, gender and dosage. Retrospective studies have found comorbidity related to
less adherence to medication (Lensing et al. 2013, Torgersen et al. 2012), and this
 corresponds with our findings with less comorbidity among those adherent to treatment.

Medication dosages were in line with other medication studies in adults with ADHD
(Wender et al. 2011, Adler et al. 2011, Marchant et al. 2010). Similar to what was reported in
a study from a younger patient population (aged 9 - 21 years) (Powell et al. 2011), we found
variations in dosages across time and individuals, although patients with highest dosages
tended to have the best responses. The flexible dose regime allowed for individualized dosing,
thus taking into account both tolerability and optimizing efficacy.

Implications
To our knowledge, this is the largest single site prospective study of adult ADHD patients. In
a general clinical setting we found sustained and increasing improvements of patients
correlated with time on ADHD drug treatment. Higher dosage of medication over time was
associated with greater improvement. Though, adverse effects and comorbidities were related
to less effectiveness of treatment, the benefit of treatment was not essential weakened for
most of the patients during one-year treatment. These findings supplement previous
knowledge regarding the effectiveness of ADHD medication regimes. Although most patients
reported improvement on medication, a significant proportion did not respond properly or did
not tolerate any of the current drugs. Further research is warranted on these subgroups of
patients. There is also a need for developing more specific treatment programs for patients
with comorbid mental disorders. Psychosocial treatments are also available, and the
combination of pharmacological treatment and psychotherapy is another important theme for
future studies.

Strength and limitations
In the longitudinal analyses, time variation confounding is a source of bias not fully
accounted for in our linear mixed model (LMM). Also, “the missing values at random”
assumption in the LMM is questionable, even though loss to follow-up was small and partly
adjusted for by cumulative amount of adverse effects. In spite of the estimated treatment
effect falling short of a "true" causal effect, the LMM was considered to be a reasonable
choice, with its widespread recognition and ability to address, at least partly, the problems of
confounding and loss of patients to follow-up. A dose-response effect of treatment was found
to be strong, even in the presence of the additional time covariates, which should yield a conservative estimate.

5. Conclusions

At the time of our review (Paper I), treatment of adult ADHD with stimulants and atomoxetine had shown beneficial effects in a few RCTs up to six months follow-up, and was well tolerated among most of the patients. However, more systematic studies with longer observation time are needed to indicate whether these findings are clinically relevant in longer time perspectives.

Childhood hyperactive-impulsive symptoms and overall severity of childhood ADHD-symptoms are associated with high school drop-out rates, while persisting inattentive symptoms and comorbid mental disorders in adulthood are more related to occupational impairment (Paper II).

One year treatment of adult-ADHD with stimulants or atomoxetine was associated with clinically significant reduction of ADHD-symptoms, improvement of function and reduction in mental distress. No serious adverse events were observed, and side-effects in general were acceptable (Paper III). Recognition and pharmacological treatment of adult ADHD seem beneficial for the most patients.

6. Future perspectives

6.1. Implications for clinical practice

Although the relevant literature identified in the review was scarce and primarily naturalistic, it suggests definitively that the pharmacological treatment of ADHD leads to symptom reduction, better self-esteem, higher educational levels and occupational status, fewer accidents, and less delinquency. This should support the recommendations of medical treatment in the current guidelines. Though we found no association between stimulant treatment and sudden cardiac death (Paper I), these drugs should be used with caution, and cardiovascular parameters should be monitored in stimulant treated adults with ADHD,
especially those with borderline abnormal cardiovascular signs. Furthermore, because stimulants may be abused, their potential for causing substance abuse has been a concern. Although meta-analyses, mainly in younger populations, have shown that stimulants do not increase the risk for substance use disorders, clinicians should be alert to the risk for misuse and diversion among ADHD adults.

The close relationship between severity of child ADHD symptoms and a high load of hyperactive-impulsive symptoms in childhood ADHD, and drop-out from school and fewer years of attained education (Paper II), suggest that early recognition and intervention for ADHD may be essential for improving the long-term educational outcomes of ADHD patients. Findings of persistent inattentive symptoms in adulthood and additional adult comorbidity, associated with greater occupational impairment, which were major predictors of long term work disability, should be emphasizes in the treatment measures of adult ADHD. Measures and counseling towards workplace adaptations to prevent long-term work disability are warranted. A dimensional approach (Paper II) actualized a perspective on ADHD as a spectrum disorder, and challenged “well-defined” diagnostic categories in the understanding of this psychiatric disorder and its relation to impairments. Patients with a categorically “sub-threshold” ADHD diagnosis may benefit from treatment interventions as well, and symptom overlapping comorbid diagnoses may not be seen as a hinder for ADHD diagnosis or treatment.

In our study on medical treatment (Paper III), medication for adult ADHD was associated with long-term reduction of ADHD symptoms and improvement of function and mental distress among those who used the medication, and side-effects were within expected incidences. These results should provide realistic guidance for clinicians with regard to medical treatment in everyday practice, and should supplement previous knowledge regarding the effectiveness of ADHD medication regimes.

6.2. Implications for future research

There is still a shortage of long term studies, and treatment effects should be studied for years rather than months (Paper I). For inferences of causal associations between treatment and outcomes, the RCT design is the preferred methodology. However, at the current state, this appears not to be feasible. Concrete and simple outcome variables, on large samples with less exclusion criteria, may be preferable to sophisticated psychological measures with unclear
ecological validity. Thus, information from prescription databases, linked to health registers could give information on a sample size and time scale not available for conventional RCTs.

In many areas of medicine, the ethical issues involved in performing long term RCTs are currently being discussed. That leaves us with open-label extensions and naturalistic studies along with their concomitant biases and confounds similar to what is discussed in relation to our Paper III. In ADHD treatment, as well as in many other therapeutic areas, health economic perspectives of the interventions are increasingly being requested and discussed. It is expected that a treatment method should contribute to a measurable increase in quality adjusted life years or other measures of long-term benefit. Few of the studies cited in our review contain such data.

Another limitation of current long-term studies has been the focus on ADHD symptoms as a measure of efficacy. Although such data are essential, clinicians and patients ultimately are more concerned about the functional implications of treatment. For this reason, future research should incorporate measures of functional outcomes. It should also evaluate the degree to which the patient’s symptoms and behaviors have been optimized, rather than simply evaluating a fixed response criterion. More suitably, the goal of ADHD treatment should be clinically relevant remission of symptoms and impairments and this should be implemented in the research protocols to address these goals (Ramos-Quiroga & Casas 2011).

Our dimensional approach (Paper II) revealed the importance of addressing inattentive symptoms dimensionally in the understanding of adult ADHD, and calls for further research on relationships with functional outcomes, prevention of work disability and rehabilitation.

Although most patients reported improvement on medication (Paper III), a significant proportion did not respond properly or did not tolerate any of the current drugs. These subgroups of patients are suggested to be subject of further studies. There is also a need for developing more specific treatment programs for patients with comorbid mental disorders. Psychosocial treatments are also available, and the combination of pharmacological treatment and psychotherapy is another important theme for future studies.
References

65. Faraone SV, Biederman J, Spencer T, Mick E, Murray K et al. 2006b. Diagnosing adult attention deficit hyperactivity disorder: are late onset and subthreshold diagnoses valid? Am. J. Psychiatry 163(10):1720-9

109. Kooij JJS, Francken MH. 2010. DIVA 2.0. Diagnostic Interview Voor ADHD in Adults bij volwassenen [DIVA 2.0. Diagnostic Interview ADHD in Adults]. DIVA Foundation

131. McCulloch CE. 2006. Generalized linear mixed models, Wiley Online Library

178. Statistics PASW. 2009. PASW 17.0.3. SPSS Inc., IBM Company Headquarters

Original paper I - III
REVIEW

Long-term efficacy and safety of treatment with stimulants and atomoxetine in adult ADHD: A review of controlled and naturalistic studies

Mats Fredriksena, Anne Halmøyb,c,d, Stephen V. Faraoned,e, Jan Haavikb,c,d,*

aDivision of Mental Health & Addiction, Vestfold Hospital Trust, Norway
bDepartment of Biomedicine, University of Bergen, Jonas Liesvei 91, 5009 Bergen, Norway
cDivision of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
dK.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Norway
eDepartments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA

Received 25 February 2012; received in revised form 28 June 2012; accepted 24 July 2012

Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common disorder of childhood that often persists into adulthood. Although stimulant medications are recommended as the first-line treatment for ADHD because of their documented short-term effects in children and adults, less is known about their effects on long-term outcome in adults. Here we review the long-term efficacy and safety of the stimulant drugs methylphenidate and amphetamine, as well as the related compound atomoxetine. We performed a systematic review to identify direct and indirect effects of stimulant therapy on long-term outcome in adults. Five randomized controlled trials (RCTs), and 10 open-label extension studies of initial short-term RCTs, with total follow-up of at least 24 weeks, were identified. All these RCTs found that medication was significantly more efficacious than placebo in treating ADHD in adults, and the extension studies showed that this favorable effect of medication was maintained during the open-label follow-up period. However, since the maximum duration of these pharmacological trials was 4 years, we also reviewed 18 defined naturalistic longitudinal and cross-sectional studies, to provide more information about longer term functional outcomes, side effects and complications. These observational studies also showed positive correlations between early recognition of the disorder, stimulant treatment during childhood and favorable long-term outcome in adult ADHD patients. In conclusion, stimulant therapy of ADHD has long-term beneficial effects and is well tolerated. However, more longitudinal studies of long duration should be performed. In addition, the ethical issues involved in performing double blind RCTs of many years duration should be further explored.

© 2012 Elsevier B.V. and ECNP. All rights reserved.

Corresponding author at: Department of Biomedicine, University of Bergen, Jonas Liesvei 91, 5009 Bergen, Norway. Tel.: +47 55586432.
E-mail address: jan.haavik@biomed.uib.no (J. Haavik).
1. Introduction

Although attention-deficit hyperactivity disorder (ADHD) for some time was considered a childhood condition, evidence accumulated during the past decades has shown that this disorder often persists into adulthood and is associated with long-term impairments and suffering (Kooij et al., 2010).

The estimated prevalence of ADHD in adults is around 3–5% (Kooij et al., 2010). Disorder often persists into adulthood and is associated with accumulated during the past decades has shown that this some time was considered a childhood condition, evidence

In addition, we discuss some general methodological challenges encountered in pharmacologic studies of ADHD (Hazell, 2011), identify some important knowledge gaps, and list recommendations for future investigations.

2. Experimental procedures

We performed a systematic search using the following electronic databases: National Library of Medicine Pubmed site, EMBASE and PsycINFO of articles published prior to the 31 January 2012. Citations from identified articles were searched for relevant studies.

We retrieved a total of 3127 articles using multiple combinations of the search terms: ADHD (attention-deficit hyperactivity disorder), trial, clinical trial, long-term, effectivness, effect, efficacy, outcome, outcomes, occupational outcome, work status, functional, functions, medications, treatment, stimulants, psychostimulants, methylphenidate, (dexam)phetamine, and atomoxetine. By restricting the search to papers published in English on human subjects aged 18 years or older at the time of evaluation and excluding reviews, the number of hits was reduced to 533. Based on the information provided in the abstracts of these articles, we selected only studies with a childhood onset of ADHD or hyperkinetic disorder. For ADHD diagnoses, we required use of DSM-IV, DSM-IV-R, (American Psychiatric Association, 1994, 2000); DSM-III, DSM-III-R (American Psychiatric Association, 1980, 1987; Hechtman et al., 1984), or Utah Criteria (Wender et al., 2011). For hyperkinetic disorder diagnoses we required ICD-10 criteria (World Health Organization, 1993).
Only studies performed on a primary patient sample with a sufficiently large sample size (≥30 subjects) were included. The reviewed studies comprise five randomized controlled trials (RCTs) with durations of 24 weeks or longer (Table 1), and 10 open-label extensions of initial RCTs of a shorter duration (Table 2). There are few RCTs with durations more than 12 weeks (Faraone and Glatt, 2010; Torgersen et al., 2008), and the usual definition of “intermediate to long-term treatment” comprises studies of 24 weeks or more (Rosler et al., 2010). Due to the limited information available from published RCTs (few patients, few outcome measures and limited study durations) we also included open-label studies with a prospective follow-up methodology and with a defined medication titration schedule (Table 2). Additional studies of medication treatment with a naturalistic or retrospective design were included if they expanded the duration of treatment or the outcome measures relevant to be evaluated (18 studies, see Supplementary Table 1). We required the outcome measures to be clinically relevant, such as ADHD symptoms, features of mental health or comorbidity, measures of social functions or occupational status and tolerability. Some studies of growth, substance use and cardiovascular risk outcomes were not captured by our review strategy because many of these relied on child, rather than adult samples. We decided to supplement our review with a non-systematic discussion of these studies because these issues are of much interest to clinicians. For these areas, we relied on recent systematic reviews of growth and substance use outcomes and on recent pivotal studies of cardiovascular risk. Studies focusing on specific features such as driving skills, neurocognitive measures, or neuroimaging were not included. A limited number of reviews concerning general topics, such as childhood ADHD, basic pharmacology and methodology are also cited.

3. Results

3.1. Study design

We found five double blind randomized controlled studies (RCTs) treating ADHD adults with stimulants or atomoxetine for 24 weeks or more (Table 1). Additionally, 10 studies reported initial short-term randomized RCTs, followed by an open-label extension for a total duration of 24 weeks or longer (Table 2). We also found 18 treatment studies with naturalistic longitudinal or cross-sectional designs that met our inclusion criteria (Supplementary Table 1). Most of the articles found were open-label treatment studies of adults, but some studies followed adolescents into young adulthood (Biederman et al., 2006; Hechtman, 1985; Powers et al., 2008). Only a few extension studies from initial RCTs provided data for treatment periods longer than 2 years (Adler et al., 2008; Marchant et al., 2011). Some follow-up and retrospectively designed studies assessed patients after 2-13 years of treatment (Barkley et al., 2003; Biederman et al., 2008; Gjervan et al., 2011; Halmoy et al., 2009; Powers et al., 2008). However, due to limitations in study designs, data from such studies should be interpreted cautiously.

3.2. Location of studies and sample size

Ten of 15 (67%) of the RCTs and open-label extension studies and 13 of 18 (72%) of the naturalistic and other studies were performed in the United States of America (USA). The other studies were conducted in Canada (Weiss et al., 2010) and European countries, i.e. Germany (Rosler et al., 2009, 2010), Denmark (Powell et al., 2011), The Netherlands (Buitelaar et al., 2011), Sweden (Bejerot et al., 2010; Ginsberg and Lindefors, 2012) and Norway (Gjervan et al., 2011; Halmoy et al., 2009). The numbers of subjects enrolled in these studies varied between 30 (Ginsberg and Lindefors, 2012) and 725 (Weiss et al., 2010), except for three recent large retrospective cohort studies on the cardiovascular safety of treatment with stimulants, which included hundreds of thousands of person years of children and adults using ADHD drugs (Cooper et al., 2011; Schelleman et al., 2012; Habel et. al., 2011).

3.3. Efficacy measures

All randomized controlled trials (RCTs) and extensions of RCTs used an investigator-rated and/or patient-rated ADHD symptom rating scale and most studies used additional scales. The following investigator-rated ADHD symptom scales were used: the Adult ADHD Investigator Symptom Rating Scale (AISRS) (18 items) (Adler et al., 2009a; Biederman et al., 2010a), the Wender-Reimherr Adult Attention Deficit Disorder Scale (WRADDs) (Rosler et al., 2009, 2010), the Conners Adult ADHD Rating Scale-Investigator Rated: Screening Version (CAARS-Inv: SV) (Adler et al., 2009a; Young et al., 2011), and the ADHD-Rating Scale IV (ADHD-RS-IV) (Ginsberg et al., 2011). The following self-rated ADHD symptom scales were used: the Conners Adult ADHD rating scale self-report long form CAARS-SL (Rosler et al., 2009, 2010), and the Adult ADHD Self-Report Scale, 18 items (ASRSv1.1) (Adler et al., 2009b).

The most widely used investigator rated assessment for overall severity and improvement was one of three clinician-rated Clinical Global Impression scales (CGIs): CGI-Severity, CGI-Improvement, and the Clinical Global Impressions-ADHD-Severity of Illness (CGI-ADHD-S) (Adler et al., 2009a). Physician ratings on the Global Assessment of Symptoms and Functioning (GAS and GAF), the Sheehan Disability Scale (SDS) and self-ratings on the Social Adjustment Scale-Self-Report (SAS-SR) were used to evaluate functional outcomes (Adler et al., 2008; Buitelaar et al., 2012; Marchant et al., 2010). Health Related Quality of Life (HRQL) measures in use were the Adult ADHD Quality of Life Measure (AAQoL) (Adler et al., 2009a, 2011) and the Short Form-36 Health Survey version 2 (SF-36v.2) (Ware, 2007; Weiss et al., 2010). Non-ADHD psychopathology was assessed with several scales including the clinician-rated Hamilton depression Scales (17 items) for depression and anxiety (Biederman et al., 2010a; Hamilton, 1959; 1960) and self-ratings on the Symptom Checklist-90-Revised (SCL-90-R) (Biederman et al., 2010b; Derogatis and Cleary, 1977; Rosler et al., 2010).

3.4. Efficacy in long-term studies

3.4.1. Methylphenidate

We found eight long-term RCT and RCT-extension studies of methylphenidate (MPH) (Adler et al., 2009b; Biederman et al., 2010a; Buitelaar et al., 2011; Ginsberg and Lindefors, 2012; Marchant et al., 2010; Rosler et al., 2009, 2010; Wender et al., 2011). Most of the RCT and RCT-extension studies examined
Table 1 Randomized double blinded placebo-controlled trials with at least 24 weeks duration.

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample</th>
<th>Medication/dose</th>
<th>Duration of study</th>
<th>Measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosler et al. (2009)</td>
<td>N=363, MPH ER n=241, Placebo n=118 (parallel group design) Male 50% ADHD (DSM-IV). (38% previous stimulant treatment) Adults; mean age 35.2 ± 10.1 (MPH ER group)</td>
<td>MPH ER (methylphenidate extended release) (50% MPH IR and 50% MPH ER) Titrated b.i.d. (interval 6-8 h.) first 5 weeks to max. 60 mg/d. Mean daily dose 41.2 ± 18.2 mg at week 24 (0.55 ± 0.27 mg/kg body weight)</td>
<td>24 weeks (titration periods 5 weeks and maintenance—phase of 19 weeks)</td>
<td>Primary outcome: response-definition: 30% reduction WRAADDS score Secondary outcome: CAARS-S:L (DATS) (DSM-IV ADHD symptoms total subscale) (self-report) Overall severity: CGI</td>
<td>61% responders receiving MPH ER, 42% responder in the Placebo group (p=0.001) CAARS-DATS: symptom decrease superior for MPH ER vs. placebo group (p=0.016) Much or very much improved on CGI (CGI < 2); 55% MPH ER vs. 37% in placebo (p<0.05) Completers (69%). Premature termination n=110 of 359 (31%); 24% MPH ER vs. 43% placebo (p<0.001) Adverse events: 13% MPH ER vs. 8% placebo</td>
</tr>
<tr>
<td>Rosler et al. (2010)</td>
<td>Secondary analysis of trial described above Same as above Same as above</td>
<td>Same as above</td>
<td>Same as above</td>
<td>Primary outcome: WRAADDS; reduction EDS (Emotional Dysregulation Scale, observer rated, 10 items from) CAARS-S:L; reduction ELS (self-rated six items construct of Emotional Dysregulation Scale) SCL-90-R assessing comorbid psychopathology</td>
<td>MPH-ER superior to placebo reducing emotional symptoms on EDS and ELS, significant from week 5, Cohen’s d effect size 0.3 (p=0.006) CAARS-S:L: ELS: significant reduction, effect size 0.29 (Cohen’s d) superior to placebo SCL-90-R; OCD symptoms and self-concept problems declined more in the MPH-ER group (effect size 0.3, p=0.01). Anxiety, depression, anger and hostility, phobia, paranoid ideations and psychoticism were not improved</td>
</tr>
<tr>
<td>Biederman et al. (2010a)</td>
<td>Phase 1, N=227 randomized OROS MPH n=109 (placebo n=114) and phase 2, n=96; phase 3, n=23 Parallel group three phases design ADHD</td>
<td>OROS MPH Mean dosage MPH at phase 1, 78.4 ± 31.7 mg/d (0.97 ± 0.32 mg/kg body weight)</td>
<td>34 weeks study Phase 1; 6-week efficacy trial (n=223). Phase 2; 24-week double-blind continuation by responders randomized to OROS MPH (n=62) and placebo (n=34)</td>
<td>Primary outcome: CGI-improvement scale (CGI-I): much or very much approved (CGI-I=2), and AISR reduction of larger than 30% Hamilton Depression Scale (17 items) Relapse definition: worsening</td>
<td>Phase 1; OROS MPH group 62% (n=67) responders vs. placebo responders 37% (n=41) (p<0.001) Phase 2; rate of completers did not differ, but OROS MPH responders were more likely to drop because</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample</th>
<th>Medication/dose</th>
<th>Duration of study</th>
<th>Measures</th>
<th>Resultsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adler et al.</td>
<td>(DSM-IV-TR) Male 40% (OROS MPH group) Adults mean age 34.7 ± 9.25 years (in OROS MPH group)</td>
<td>Phase 3; 4-week double-blind placebo-controlled discontinuation study for MPH responders in phase 2 (OROS MPH n=12, placebo n=11)</td>
<td>of the phase 1 endpoint CGI-I score of 2 or higher, or improvement from baseline fell below 15% on AISRS score for two consecutive visits</td>
<td>of the adverse effects, and placebo responders because of loss of effect. Phase 3; OROS MPH responders who completed phase 2, randomized for a 4-week, placebo controlled discontinuation. The time by treatment interaction for AISRS was statistically significant (p=0.009), but not any difference in relapse-rate. Relapse-rate did not differ (18% in both groups). Maintenance of response did not differ. Completers phase 1; no difference between groups, MPH n=86, 79% and placebo n=98, 86%. Premature termination by adverse events: n=13, 11% MPH ER vs. 3% placebo (p<0.01).</td>
<td></td>
</tr>
<tr>
<td>Adler et al.</td>
<td>N=501 randomized to ATX n=250 and placebo n=251 ADHD (DSM-IV) 72% combined subtype Male 50% adult; mean age 37.6 years</td>
<td>ATX once-daily, morning-dosed Titration steps minimum 7 days, 25 mg-40 mg-80 mg-100 mg/d</td>
<td>6 months</td>
<td>Mean AISRS total scores for ATX decreased from 38.2 (7.5) at baseline to 21.4 (12.3) at the 6-month end point Placebo from 38.6 (7.0) to 25.8 (13.2) (p = 0.035). AISRS total score, CAARS-inv:SV index total score, CIGI-ADHD-S, and AAQoL. ATX was statistically superior to placebo at the 10-week and 6-month time points Completers: n=94 (38%) patients of 250 randomized to ATX n=112 (45%) of 250 patients randomized to placebo completed the study</td>
<td></td>
</tr>
</tbody>
</table>
slow release formulations: MPH extended release (MPH ER) or the osmotic release oral system (OROS MPH). Except for a single study using the dextrorotatory enantiomer of MPH, dexmethylphenidate (d-MPH) (Adler et al., 2009b), a mixture of L- and D-threo MPH was used in all studies, including one study of immediate release MPH (MPH IR) (Wender et al., 2011). Details about the samples, study design, measures and outcomes are presented in Tables 1 and 2 and Supplementary Tables 1 and 2.

All the reviewed RCTs found beneficial effects of the active compounds, with statistically significant reductions in both ADHD symptoms and overall clinician rated severity (CGI). In one study, improvements in emotional dysregulation and comorbid psychopathology were statistically significant.

Table 1 (continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample</th>
<th>Medication/dose</th>
<th>Duration of study</th>
<th>Measures</th>
<th>Resultsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young et al.</td>
<td>N=502, ATX n=268, placebo n=234</td>
<td>ATX (atomoxetine) once-daily (QD), morning-dosed (2-week: on-label titration; 40 mg for 3 days, then 80 mg, or slow titration; 40 mg for 7 days then 80 mg titration). After 24 weeks, PBO patients were rerandomized to either ATX titration strategy.</td>
<td>24 weeks</td>
<td>Primary outcome: CAARS-Inv:SV; Response-definition: 25% decrease on CAARS-Inv:SV Secondary outcome: CGI-ADHD-S; MADRS. State-Trait Anxiety Inventory; General and titration safety measures and tolerability.</td>
<td>CAARS-Inv:SV total score reduction was greater with ATX over PBO at 12 weeks (−14.33 vs. −10.05; p < 0.001) and 24 weeks (−16.43 vs. −8.65; p < 0.001; effect size, 0.57) Response: greater for ATX (68%) than PBO (42%; p < 0.001) at 24 weeks. CGI-ADHD-S improvement for ATX over PBO at 8- and 24-weeks (p < 0.001; effect sizes, 0.45 and 0.46, respectively) No significant changes in depressive or anxiety measures Discontinuation due to an adverse event was greater for on-label vs. slow titration, rate of patients experiencing adverse events were similar. Common adverse events included dry mouth, nausea, and decreased appetite (Supplementary Table 2).</td>
</tr>
</tbody>
</table>

ADHD, attention deficit/hyperactivity disorder; AE, adverse events; ATX, atomoxetine; AAQoL, Adult ADHD Quality Of Life Scale; AISRS, The Adult ADHD Investigator Symptom Rating Scale; ASRSv1.1, The Adult ADHD Self-Report Scale version 1.1; CAARS, The Conners’ Adult ADHD Rating Scale-Self-Report; −S:L, long; version; −Inv:SV, investigator rated: screening version; DATS, DSM-IV ADHD symptoms total subscale; EDS, Emotional Dysregulation Scale; ELS, Emotional Lability Scale; CGI, The Clinical Global Impression Scale; I, investigator rated; CGI-ADHD-S, CGI scale of ADHD severity; DSM-IV, the Diagnostic and Statistical Manual of Mental Disorders-version IV; TR, text revised; MADRS, Montgomery-Aasberg Depression Rating Scale; MPH, methylphenidate; IR, immediate release; ER, extended release; OROS, osmotic release oral system; OCD, obsessive compulsive disorder; PBO, placebo; SCL-90-R, The Symptom Checklist-90-Revised; WRAADDS, The Wender-Reimherr Adult Attention Deficit Disorder Scale; EDS, Emotional Dysregulation Scale; ELS, Emotional Lability Scale

aSide effects are specified in the Supplementary Table 2.
bAdults: age ≥ 18 years.
Table 2 Studies with randomized double blinded placebo-controlled start and open-label extension.

<table>
<thead>
<tr>
<th>Study objective</th>
<th>Sample</th>
<th>Medication</th>
<th>Measures</th>
<th>Duration of treatment</th>
<th>Results</th>
<th>Side effects and safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylphenidate</td>
<td></td>
<td>OROS MPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginsberg and</td>
<td>N=30 male long-term prison inmates with ADHD (DSM-IV-TR) in open-label phase</td>
<td>OROS MPH</td>
<td>Titrated up to 72 mg/d during first 5 weeks, flexible dose open label extension; not exceeding 1.3 mg/kg body weight</td>
<td>52-weeks (including 5-weeks RCT, and 47-weeks open-label extension)</td>
<td>Improved ADHD symptoms ($p<0.001$; Cohen's d effect size, 2.17)</td>
<td>Adverse effects n.s.</td>
</tr>
<tr>
<td>Lindefors (2012)</td>
<td>Adults, mean age 33.5 years (95% CI, 26.7-40.2 years)</td>
<td></td>
<td>Mean dosage at the end of week 52; 105 mg/d (1.2 mg/kg)</td>
<td></td>
<td>Response (30% decrease of CAARS-O:SV at week 5); 87% responded to OROS MPH compared with 0% for placebo; Number needed to treat (NNT) was 1.1 (95% CI: 1-2). ASRS, CGI and GAF improved during open-label extension. All completed open-label phase.</td>
<td>No significant changes in systolic or diastolic blood pressure (BP), heart rate or body weight initial 5 weeks 52-weeks study, systolic BP in the MPH group increased by 21.5 mm Hg (95% confidence interval (CI): 8.9-34.0) and diastolic BP by 11.0 mm Hg (95% CI: 4.9-17.1) Heart rate increased by 13.2 beats/min (95% CI: 7.0-19.4) from baseline in the group initially placebo.</td>
</tr>
<tr>
<td>Buitelaar et al.</td>
<td>N=156 open phase, withdrawal phase</td>
<td>OROS MPH</td>
<td>Mean dose 64.0±23.3 mg/d (0.75 mg/kg body weight)</td>
<td>52 weeks and 4-week withdrawal phase after 52 weeks treatment (initial 5 week RCT, n=401)</td>
<td>Open-label phase (n=156), mean CAARS-O:SV score decreased 1.9±7.8 ($p<0.01$) from baseline, small statistically significant improvements observed for CAARS-S, CGI-S and SDS in the double-blind withdrawal phase: OROS-MPH (n=23), placebo (n=22), CAARS-O:SV increased from double-blind baseline in the OROS-MPH and placebo arms (4.0±7.6 vs. 6.5±7.8, NS) Completers: 63% (n=99) Short-term effects of OROS-MPH continued during long-term treatment</td>
<td>Long-term OROS-MPH treatment was well tolerated</td>
</tr>
<tr>
<td>(2011) Evaluate long-term treatment and maintenance of effect of OROS MPH after withdrawal</td>
<td></td>
<td>CAARS-O:SV and CGI-S, SDS (Sheehan Disability Scale)</td>
<td></td>
<td></td>
<td></td>
<td>No evidence of withdrawal or rebound after discontinuation Vital signs and ECG did not differ from baseline. n=2 cases of hypertension in treatment with DBP> 90 mm Hg</td>
</tr>
<tr>
<td>Marchant et al., 2010</td>
<td>Reexamine findings from RCT for long-term significance</td>
<td>N=34 (of 41 in RCT, 47 baseline) ADHD (DSM-IV-TR) Male 65% Adults, mean age 31.5 ± 11.6 years</td>
<td>OROS-MPH, dosage (65% of responders) ≤ 54 mg/d</td>
<td>WRAADDSS Defined sub-groups; (ADHD) alone, emotional dysregulation (ADHD+ED), and plus oppositional defiant disorder (ODD). ADHD-Rating Scale (ADHD-RS). Personality disorder (PD)</td>
<td>6-months follow-up</td>
<td>Maintained improvement on all three WRAADDSS-defined dimensions; attention+disorganization by 61%, hyperactivity-+impulsivity by 60%, emotional dysregulation 66% for all subgroups ADHD+ED+ODD group showed most long-term improvement on social maladjustment. PD patients were less likely to complete or show improvement. Responders in cross-over double-blind phase: 56% Completers of open-label phase: 44% (n=18)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Wender et al. (2011)</td>
<td>Determine effects of long-term MPH treatment on symptom severity and social adjustment</td>
<td>N=116 ADHD ''Utah Criteria'' Male 72% Adults, mean age 36.9 ± 8.5 years</td>
<td>Immediate release MPH (IR MPH) vs. placebo</td>
<td>Response: 50% reduction of observer rated WRAADDSS Clinical Global Impression of Improvement (CGI-I), GAF, the Work and Social Adjustment Scale (WSAS)</td>
<td>Initial RCT, followed by 12-month open-label extension for responders</td>
<td>In the double blind trial more subjects in IR-MPH group responded (74%) vs. placebo (21%) (p=0.01) During open-label trial, symptom severity decreased 80% from baseline WSAS decreased > 50% in all subscales indicating improvement Average GAF improved significantly (p<0.0001) Completers: 73% (n=57) Adults who responded, improved markedly in long-term treatment in ADHD symptoms and psychosocial functioning No serious AE</td>
</tr>
<tr>
<td>Adler et al. (2009a)</td>
<td>Evaluate long-term efficacy and safety of d-MPH-ER</td>
<td>N=170 ADHD (DSM-IV), baseline score ADHD-RS ≥ 18 and GAF ≤ 60 Male 61.8% Adults, mean age 39.0 ± 10.8 years; range 18-59 years</td>
<td>Dex-MPH extended release (d-MPH ER) RCT phase with fixed-dose 20-40 mg/d, open label extension phase with flexible dosing</td>
<td>ADHD-RS Proportion of responders on CGI-IA adverse events (AE)</td>
<td>7 months treatment; 5-week RCT followed by 6-month open-label extension (OLE)</td>
<td>60% completed (N=103) OLE (102 evaluable) Mean improvement on ADHD-RS (−10.2) switching from placebo to d-MPH-ER (n=20), and (−8.4) for they who maintained on d-MPH-ER (N=82) Respective CGI-I responder rates were 95.0% and 95.1% Once-daily d-MPH-ER evaluated safe and effective for long-term treatment Most common AE (>15%): headache, insomnia, decreased appetite No serious AE</td>
</tr>
<tr>
<td>Study objective</td>
<td>Sample</td>
<td>Medication</td>
<td>Measures</td>
<td>Duration of treatment</td>
<td>Results</td>
<td>Side effects and safety</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Amphetamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biederman et al. (2005)</td>
<td>N=223 ADHD combined subtype (DSM-IV-TR) Male 59.3% Adults, mean age 39.8 ± 11.5 years</td>
<td>MAS XR Forced-dose-escalation study Start 20 mg/d for week 1, subsequent titration up to 60 mg/d optimum effect</td>
<td>Safety assessments included reported adverse events, laboratory assessments, and monitoring of vital signs ADHD-RS-IV</td>
<td>24-months Extension of a 4-week, multicenter RCT with parallel-group design</td>
<td>ADHD symptoms significantly improved for all subjects as measured by change from baseline in mean ADHD-RS-IV total scores (−7.2 ± 13.04 unit points; p < 0.001); this was sustained for up to 24 months Treatment with MAS XR 20-60 mg/day for adult ADHD was generally well tolerated and was associated with sustained symptomatic improvement for up to 24 months</td>
<td>Most AEs were of mild to moderate intensity Most common treatment-related AEs (reported at least one occurrence) were dry mouth (43%), infection (33%), insomnia (32%), anorexia/decreased appetite (32%), headache (30%), and nervousness (26%)</td>
</tr>
<tr>
<td>Weisler et al. (2005)</td>
<td>Same sample as cited above</td>
<td>MAS XR Start 20 mg/d for week 1, subsequent titration up to 60 mg/d optimum effect</td>
<td>Resting DBP and systolic BP, and pulse at baseline, and weekly, then monthly ECG, weekly, at 3-, 6- and 12-months</td>
<td>Up to 24 months duration</td>
<td>Mean change in diastolic BP (1.3 ± 9.2 mm Hg; p=0.042), systolic BP (2.3 ± 12.5 mm Hg; p=0.006) and pulse (2.1 ± 13.4 bpm; p=0.019) were small On ECG, QTc (corrected by Bazett's formula) increased 7.2 ms (p<0.001) observed at 24 months. No subjects exhibit QTc interval above 480 ms. Cardiovascular effects were minimal in otherwise healthy adults with ADHD Vital signs should be monitored prior to and during treatment</td>
<td>n=7 discontinued due to a cardiovascular adverse event; hypertension n=5, palpitation/tachycardia n=2 Borderline baseline values of vital signs exhibit shift to abnormal values during therapy</td>
</tr>
<tr>
<td>Ginsberg et al. (2011)</td>
<td>N=345 ADHD (DSM-IV-TR) Male 54% Adults; range 18-55 years, 10.6% >50 years</td>
<td>Lisdexamphetamine dimesylate (LDX) Dosage 30-70 mg/day; dose-optimization study; mean dose 56.1 mg/d (moderately severity group), (57.1 mg/d in CGI-S=6 group)</td>
<td>Response: ADHD Rating Scale IV (ADHD-RS-IV) decrease 30% from baseline Remission: ADHD-RS-IV score ≤ 18 CGI-S; post hoc stratification of severity (CGI-S) in analysis; moderately (4), markedly or (5) severely (6)</td>
<td>13 months including 4-week RCT and 12-month open-label extension</td>
<td>Clinical response according to stratification of severity (CGI-S = 4, 5, and ≥ 6, respectively): 79%, 84%, and 88% Symptomatic remission criteria by 64%, 65%, and 72% Increased mean change of ADHD symptoms with greater baseline symptom severity (5,6) (p<0.0001), rate of response and met remission criteria by larger proportion Completers: 55% (n=158 discontinued).</td>
<td>AE: upper respiratory tract infection (21.8%), insomnia (19.5%), headache (17.2%), dry mouth (16.6%), decreased appetite (14.3%), irritability (11.2%) No serious AE</td>
</tr>
</tbody>
</table>
Atomoxetine
Adler et al. (2005)
Interim report on study of ATX, effectiveness

N = 384 ADHD (DSM-IV)
Male 64%
Adult, mean age 42.4 ± 11.2 years
Prior stimulant exposure: 47%

Atomoxetine (ATX)
Individual flexible dose (50-160 mg/d)
The primary efficacy measure: CAARS-Inv:SV total ADHD symptom score
In addition, safety, adverse events, and vital sign assessed

3 years up to 97 weeks
Significant improvement on ATX, mean CAARS-Inv:SV total ADHD symptom scores decreasing 33.2% from 29.2 (baseline of open-label therapy) to 19.5 (endpoint of open-label therapy) (p < 0.001)
Significant decreases were noted for the secondary efficacy measures: The results support the long-term efficacy, safety, and tolerability of ATX for the treatment of adult ADHD

AEs primarily of pharmacologically (noradrenergic) expected effects, increases in heart rate and blood pressure, a slight decrease in weight

Adler et al. (2008)
Long-term efficacy and safety of treatment on atomoxetine

N = 125 ADHD (DSM-IV)
Sample derived from the study of 384 patients cited above
Male 64%
Adult, mean age 42.4 ± 11.2 years

ATX
Individual flexible dose (stepwise titrated); range 50-160 mg/d
Change of CAARS-Inv:SV Total ADHD Symptom scores Sheehan Disability Scale
4 years follow up
Results from 125 patients remaining in the open-label trial since the interim report at 97 weeks up to 221 weeks of treatment
CAARS-Inv:SV Total ADHD Symptom scores decreased 30.2% (95% CI 8.8, p < 0.001) during treatment
Significant decreases for the secondary efficacy measures, including the Sheehan Disability Scale Total score, improved 25.3% (p < 0.001)
Completers: 18% (N = 69)

AEs consisted primarily of pharmacologically (noradrenergic) expected effects Cardiovascular measures not clinically significant
Discontinuation rate due to adverse events at week 97 (from baseline): 10.9%, and at 221 weeks 12.2%

AAQoL, Adult ADHD Quality Of Life Scale; ADHD, attention deficit/hyperactivity disorder; AE, adverse events; AISRS, The Adult ADHD Investigator Symptom Rating Scale; ASRS, The Adult ADHD Self-Report Scale; v1.1, version 1.1; ATX, atomoxetine; BPM, beats per minute; BP, blood pressure; DBP, diastolic blood pressure; SBP, systolic blood pressure; CAARS, The Conners’ Adult ADHD Rating Scale—Self-Report; –O:SV, investigator rated; S, self-report; –Inv:SV, investigator rated: screening version; –L, long, version; –S:L, long version; DATS, DSM-IV ADHD symptoms total subscale; EDS, Emotional Dysregulation Scale; ELS, Emotional Lability Scale; CGI, The Clinical Global Impression Scale; I, investigator rated; CGI-ADHD-S, CGI scale of ADHD severity; DMS-IV, the Diagnostic and Statistical Manual of Mental Disorders—version IV; TR, text revised; ECG, electrocardiogram; ED, emotional dysregulation; GAF, global assessment of functioning; HR, heart rate; LDX, lisdexamfetamine dimesylate; MADRS, Montgomery-Aasberg Depression Rating Scale; MAS XR, mixed amphetamine salts extended release; MPH, methylphenidate; IR, immediate release; ER, extended release; OROS, osmotic release oral system; d-MPH, dex-methylphenidate; n.s., non-significant; ODD, oppositional defiant disorder; OLE, open label extension; PBO, placebo; PD, personality disorder; RCT, randomized double blinded placebo-controlled trial; SCL-90-R, The Symptom Checklist-90-Revised; SD, standard deviation; SDS, Sheehan Disability Scale; WRAADDS, The Wender-Reimherr Adult Attention Deficit Disorder Scale; WSAS, The Work and Social Adjustment Scale

aAdults: age ≥18 years.
superior to placebo (Rosler et al., 2010); significant improvements in HRQL-measures were also reported in one study (Adler et al., 2009b).

A 24-week RCT of low-dose MPH ER included 363 ADHD adults (Rosler et al., 2009). After titration to a mean daily dose of 41 mg, the response rate was 61%, compared to 42% in the placebo group (p<0.001). This yields a number needed to treat (NNT) statistic of 6, which indicates that six patients need to be treated to achieve one medication associated positive response. In a secondary analysis of the same trial, MPH ER was significantly superior to placebo in reducing associated emotional symptoms (Rosler et al., 2010).

Another large RCT of OROS MPH used a three-stage design, where medication was first titrated to optimal response (mean dosage MPH 78 mg/d), and only responders from the placebo and treatment groups continued on their placebo or medication through the 24-week continuation phase (Biederman et al., 2010a). The rates of completion through phase 1 were similar for MPH (79%) and placebo (86%), but the termination by adverse events was higher for the treatment (11%) vs. placebo group (3%; p<0.01). In phase 2, while OROS MPH responders were more likely to drop out of the study due to adverse effects, the placebo responders were more likely to drop out due to loss of efficacy. Finally, OROS MPH responders who completed phase 2 were randomized to a 4-week RCT discontinuation of medication. Although there was no difference in relapse rate (18% in both groups), the placebo group showed a statistically significant worsening of symptoms on the AISRS (p=0.009).

Efficacy studies have mainly been performed in Psychiatric Outpatient Departments, but a recent 52-week combined RCT and open-label extension study (Ginsberg and Lindefors, 2012) evaluated the efficacy of OROS MPH in a sample of 30 adult male long-term prison inmates (mean dosage MPH 105 mg/d). It defined response as a 30% decrease of assessor rated ADHD symptoms at the end of the RCT phase (week 5). The authors reported a markedly higher response rate in the MPH group (87%) compared with placebo (0%), corresponding to an NNT of 1.1. The other ADHD symptom and functional outcome measures (ASRS, CGI-S ADHD and GAF) also improved significantly during the open-label extension with large effect sizes (Cohen’s 1.67, 2.36 and 1.62, respectively). The unusually low placebo response rate may have been due to the use of a prisoner sample.

A multiple phase study of OROS MPH (Buitelaar et al., 2011) started with a 5-week RCT phase (N=401) (Medori et al., 2008), followed by an open-label study of 52 weeks (N=156), and a 4-week withdrawal phase. Using a mean dosage of 64 mg/d, small but statistically significant reductions in ADHD symptoms and functional impairments were observed using both investigator-rated and self-rated CAARS scales, the CGI-S and the SADS. During the double-blind, 4-week withdrawal phase after the 52-week open treatment phase, investigator rated ADHD symptoms increased from baseline in both the OROS MPH and placebo arms, and the group difference was not statistically significant. However, the short-term effects of OROS-MPH continued during long-term open-label treatment, and the medication was well tolerated.

An open-label extension study of OROS MPH (Marchant et al., 2010) reexamined findings from a previously reported RCT (Reimherr et al., 2007) for long-term significance (N=34 of 41 completing the RCT, N=47 baseline). Over 80% of the patients in the sample had ADHD with emotional dysregulation or oppositional defiant symptoms. Patients with the highest level of social maladjustment at baseline demonstrated the best long-term improvement on three WRAADDS defined dimensions of attention and disorganization, hyperactivity and impulsivity, and emotional dysregulation. About 64% of responders were on moderate doses of OROS MPH (mean dosage 60 mg/d).

Wender et al. (2011) published a 12-month open-label extension of an initial RCT of immediate release MPH (N=116). In the RCT phase of the trial more subjects responded in the MPH group than in the placebo group (74% vs. 21%, p=0.01). Only participants who showed a reduction of 50% or more on the WRAADDS in the initial RCT were enrolled in the open-label extension. At the end of the open-label phase, ADHD symptom severity decreased by 80%, the score on the Weissman Social Adjustment Scale decreased >50% from baseline, and the average GAF score improved significantly (p<0.0001). Those who responded in the short-term to MPH IR also reported significant long-term improvements in ADHD symptoms and psychosocial functioning.

Adler et al. (2009b) studied an extended release formulation of dexamphetamine (d-MPH-ER) in 170 adults with ADHD. A 5-week RCT phase of fixed dose d-MPH-ER (20-40 mg/d) was followed by a 6-month open-label extension with a flexible dose regime to assess long-term efficacy and safety. The CGI-I defined responder rate was high: 95% for those switching from placebo to d-MPH-ER and 95% for those maintained on d-MPH-ER. However, the drop-out rate was also high.

3.4.2. Amphetamine

We found no RCTs with amphetamine meeting our long-term criteria (duration 24 weeks or more). A few long-term RCT-extension studies have been published using lisdexamfetamine (LDX) (Ginsberg et al., 2011) and mixed amphetamine salts extended release (MAS XR) (Biederman et al., 2005; Weisler et al. 2005). We also found one naturalistic study of dexamphetamine (DEX) (Bejerot et al. 2010) (Table 2 and Supplementary Table 1). Several naturalistic studies included amphetamines in the broader group of central stimulants (Supplementary Table 1). The small number of amphetamine studies and the use of different formulations make it difficult to generalize from the findings. With that caveat in mind, all the reviewed studies noted beneficial effects of amphetamine, which was well tolerated and associated with sustained symptomatic improvement for up to 24 months, with statistically significant changes in outcome measures.

A 12-month open-label extension of a 4-week RCT study (Ginsberg et al., 2011) examined the impact of baseline severity on the efficacy of lisdexamfetamine dimeylasate (LDX) (N=345). Response was defined as an ADHD-RS-IV decrease of at least 30% from baseline, and remission as an ADHD-RS-IV score less than 18. Analyses based on a post hoc stratification of investigator rated overall severity
(CGI-S) demonstrated increased symptom improvement (clinical response criteria met ranging from 79%-88%), and symptomatic remission (64%-72%) with greater baseline symptom severity.

In a naturalistic study, Weiss et al. (2010) evaluated the effectiveness of MAS XR in adult ADHD patients (N=725) by examining moderators and mediators of symptoms and quality of life outcomes (Supplementary Table 1). After 8 months of treatment, patients reported robust and enduring symptom relief (ADHD-RS-IV change, Cohen’s d effect size varying between 1.5 and 2.3). Characteristics such as young age, female gender, more severe illness, and treatment-naïve status predicted a greater improvement in ADHD-RS-IV scores. Symptom change and satisfaction with medication independently mediated changes in mental but not physical quality of life outcomes. There was no time lag between changes in symptoms and improved quality of life. Self-reported attention problems were a stronger mediator of symptom relief (ADHD-RS-IV change, Cohen’s d effect size, 0.31, p<0.001, see Table 1). At 24 weeks, the response rate was greater for atomoxetine (68%) compared with placebo (42%; p<0.001). This yields an NNT of 4. On the CGI-ADHD-S, improvement was greater for atomoxetine over placebo at 8 and 24 weeks (Cohen’s d effect sizes, 0.45 and 0.46, respectively). There were no significant changes in depressive or anxiety measures. Discontinuation was more frequent for on-label vs. slow titration due to adverse events, although the rates of patients experiencing adverse events were comparable.

In a 4-year follow-up study (Adler et al., 2008) of an initial larger RCT of 536 patients randomly assigned to treatment with atomoxetine or placebo (Michelson et al., 2003), a subsample of patients were enrolled in an open-label extension treatment study (N=384). At 97 weeks, 259 patients (67%) had discontinued (Adler et al., 2005). At the endpoint of up to 221 weeks of treatment 125 patients remained in study; 82% had discontinued. For those who remained, the CAARS-Inv: SV Total ADHD symptom score decreased by 30% from baseline during treatment. Significant decreases were also observed for the secondary efficacy measures; CAARS-Inv: SV subscales, CAARS-Self: SF, CGI-ADHD-S, WRAADDS and the Sheehan Disability Scale Total score, which improved by 25% (p<.001).

A more recent long-term study of the efficacy of atomoxetine (N=384 of 536 from the prior RCT) used individualized flexible dosing (50-160 mg/d) (Marchant et al., 2011). After 6 months, 61% attained an average dose of 100 mg/day. Responders from the previous double-blind phase achieved a maximum response after 8 weeks of open-label medication, but others continued to improve up to 36 weeks. Women improved more than men on the WRAADDS (p=0.007) and the CAARS (p=0.03). Responders improved 60% in attentional, hyperactive/impulsive, and emotional symptoms. Among atomoxetine non-responders in the double-blind phase 39% became responders during open-label atomoxetine treatment, indicating a later onset of effect for these subjects.

3.4.3. Atomoxetine

We found five studies of atomoxetine treatment for adults with ADHD: two intermediate- to long-term RCTs (Adler et al., 2009a; Young et al., 2011) (Table 1), and three long-term open-label RCT extension studies (Adler et al., 2005; Adler et al., 2008; Marchant et al., 2011) (Table 2). The two RCTs used large samples: N=501 (Adler et al., 2009a) and N=502 (Young et al., 2011). Both demonstrated superior efficacy on the primary outcome measures for their treatment groups compared to their placebo groups.

Adler et al. (2009a) started dose titration at 25 mg/d and proceeded up to 100 mg/d if tolerated. All the outcome measures (the AISRS total score, CAARS-Inv: SV evening index total score, CGI ADHD-S, and AAQoL total score) demonstrated changes in favor of the atomoxetine group at the 10-week and 6-month evaluations. At the 6-month end point, the mean AISRS total scores for the atomoxetine group decreased more (−16.8) than for the placebo group (−12.8; Cohen’s d effect size, 0.31, p<0.003). They found rates of completion of 38% for atomoxetine and 45% for placebo. Although not statistically significant different, the low rate of completion in the atomoxetine group may have been related to the higher rate of adverse effects in that group. The authors suggested that the large placebo effect in this trial could have been due to sample bias, where motivated patients were willing to be treated with placebo for an extended period.

The other long-term RCT of atomoxetine treatment (N=234) also used once daily medication, but compared the tolerability of initiating treatment with atomoxetine as a standard titration (on-label) vs. using a slower titration strategy (Young et al., 2011). Improvement as measured by the CAARS-Inv: SV total score was greater for atomoxetine compared with placebo at 12 weeks and 24 weeks (Cohen’s d effect size, 0.57, p<0.001, see Table 1). At 24 weeks, the response rate was greater for atomoxetine (68%) compared with placebo (42%; p<0.001). This yields an NNT of 4. On the CGI-ADHD-S, improvement was greater for atomoxetine over placebo at 8 and 24 weeks (Cohen’s d effect sizes, 0.45 and 0.46, respectively). There were no significant changes in depressive or anxiety measures. Discontinuation was more frequent for on-label vs. slow titration due to adverse events, although the rates of patients experiencing adverse events were comparable.

In a 4-year follow-up study (Adler et al., 2008) of an initial larger RCT of 536 patients randomly assigned to treatment with atomoxetine or placebo (Michelson et al., 2003), a subsample of patients were enrolled in an open-label extension treatment study (N=384). At 97 weeks, 259 patients (67%) had discontinued (Adler et al., 2005). At the endpoint of up to 221 weeks of treatment 125 patients remained in study; 82% had discontinued. For those who remained, the CAARS-Inv: SV Total ADHD symptom score decreased by 30% from baseline during treatment. Significant decreases were also observed for the secondary efficacy measures; CAARS-Inv: SV subscales, CAARS-Self: SF, CGI-ADHD-S, WRAADDS and the Sheehan Disability Scale Total score, which improved by 25% (p<.001).

A more recent long-term study of the efficacy of atomoxetine (N=384 of 536 from the prior RCT) used individualized flexible dosing (50-160 mg/d) (Marchant et al., 2011). After 6 months, 61% attained an average dose of 100 mg/day. Responders from the previous double-blind phase achieved a maximum response after 8 weeks of open-label medication, but others continued to improve up to 36 weeks. Women improved more than men on the WRAADDS (p=0.007) and the CAARS (p=0.03). Responders improved 60% in attentional, hyperactive/impulsive, and emotional symptoms. Among atomoxetine non-responders in the double-blind phase 39% became responders during open-label atomoxetine treatment, indicating a later onset of effect for these subjects.

3.5. Long-term studies of functional outcomes

Assessment of functional outcomes in RCT studies is based mainly on patient or clinician rated measures of functioning according to standardized scales. The natural course of ADHD is associated with unfavorable educational and occupational outcomes and increased risk of developing secondary problems, including substance abuse, psychiatric comorbidity and legal/criminal problems. Such indirect outcomes typically evolve gradually over years, making them less easily quantifiable at specific time points, and more challenging to include as variables even in long-term RCTs. Other study designs are thus useful to inform us about the potential outcome of treatment on important functional areas across the life-span (see Supplementary Table 1 for a summary of naturalistic and observational studies).

In their prospective follow-up from 1984, Hechtman et al. found that young hyperactive boys treated with stimulants (for at least 3 years) showed a better outcome in several areas of life (better self-esteem, less accidents and delinquency) than hyperactive youths with ADHD who did not
receive sustained treatment with stimulants. In contrast, no differences were found in educational or occupational achievement (Hechtman et al., 1984). Two other follow-up studies with comparable designs found that treated children with ADHD had better academic achievement (Powers et al., 2008) and were less likely to have repeated a grade compared to their counterparts who had not received treatment with stimulants (Biederman et al., 2009).

Occupational outcome has been less studied than education and school-performance, since studies of ADHD in adulthood have appeared more recently in the literature than studies of ADHD in childhood and adolescence. The effect of treatment on occupational functioning has, however, been the focus of some cross-sectional/retrospective studies of clinically diagnosed adults with ADHD (Gjervan et al., 2011; Halmøy et al., 2009). These studies report a positive correlation between employment status and treatment with stimulants, both current and past. Interestingly, treatment with stimulants in childhood was the strongest predictor for being employed as an adult (OR=3.2, p=0.014) (Halmøy et al., 2009) and older age of treatment initiation was associated with poorer occupational outcomes (Gjervan et al., 2011) even after adjusting for ADHD symptom severity and psychiatric comorbidity. The authors noted that the observed correlation also could reflect a more general beneficial effect of early recognition and intervention. However, their cross-sectional/retrospective design makes it difficult to infer causal relationships between treatment and outcome.

The risk of criminality is increased in children with ADHD growing up, independent of comorbid conduct disorder in childhood. Hechtman et al. (1984) found a reduced risk of later delinquency among treated compared to non-treated children with ADHD followed to young adulthood (see above, Supplementary Table 1). Ginsberg and Lindefors (2012) recently showed that stimulant treatment was as effective in reducing ADHD symptoms among prison inmates with ADHD as for adults with ADHD in general. There is, however, still a need for follow-up studies of this population to assess whether ADHD symptom reduction reduces the risk of later criminal behavior.

3.6. Tolerability, adverse effects and safety

3.6.1. Methylphenidate
The basic pharmacology of psychostimulants and atomoxetine is well established, and the adverse effects reported during systematic trials of these drugs can largely be predicted from their effect on central and peripheral catecholaminergic neurotransmitter systems (Kuczenski and Segal, 1975). Side effects seen in the RCTs are summarized in Supplementary Table 2. All included MPH trials reported a higher prevalence of decreased appetite and mucosal dryness in groups receiving active treatment compared to placebo. Most studies also found changes in cardiovascular parameters associated with receiving active treatment.

In a 24-week RCT study of MPH ER (Rosler et al., 2009), tolerability and safety were assessed both by spontaneously reported adverse events and by use of a manual for the assessment and documentation of psychopathology, the 40 item AMDP-system (Guy and Ban, 1982). This study reported a transient increase in heart rate at 4 weeks that was not significant at 24 weeks. It found no change in mean body weight between the groups. Most adverse events were reported during the titration phase, by week 4, and a global assessment of tolerability at week 24 noted “good” and “very good” tolerability, with small differences between the MPH-ER group (n=241) and the placebo group (n=118) (79.3% vs. 89.7%).

In another long-term RCT (Biederman et al., 2010a), discontinuation due to adverse events was higher for the OROS MPH group (11% vs. 3%; p<0.01) during the 24-week continuation phase. During that phase, OROS MPH responders were more likely to drop out of the study due to adverse effects. Decreased appetite, insomnia, being tense/jittery, mucosal dryness, and some neurological symptoms were statistically significantly more frequent in the OROS-MPH treatment group, and decreased appetite, insomnia, and mucosal dryness were associated with OROS-MPH treatment during phase 2 (Supplementary Table 2), but not during phase 3 (small sample). Like the aforementioned study, there were no reports of death or serious adverse effects in this study.

In a large (N=550), 1 year, prospective open-label study of OROS MPH (Adler et al., 2011), only 44% completed 12 months of treatment, with the most common adverse events being a mean weight decrease, decreased appetite, headache, and insomnia. There were small mean increases in several cardiovascular parameters, but no serious adverse events or clinically significant changes in electrocardiogram (ECG) or laboratory values. Similarly, in a long-term study of treatment with d-MPH-ER the most common adverse events were headache, insomnia, and decreased appetite (Adler et al., 2009b).

In a recent 52-week combined RCT and open-label extension study of OROS MPH in prison inmates (Ginsberg and Lindefors, 2012), the authors found no statistically significant drug-placebo differences in the proportions of adverse effects during the initial 5-week RCT, including changes in systolic blood pressure, diastolic blood pressure, heart rate and body weight. However, at the end of the 47-week open-label MPH treatment period, they reported increases in the following cardiovascular parameters: systolic blood pressure of 21.5 mm Hg in the OROS MPH group, vs. 6.3 mm Hg in the placebo group, diastolic blood pressure of 11.0 mm Hg vs. 0.5 mm Hg, and heart rate of 4.6 beats/min vs. 13.2 in the placebo group.

In their naturalistic follow-up study of 86 MPH treated patients and 47 DEX treated patients, Bejerot et al. (2010) reported an increased heart rate from 70 to 80 beats/min (p=0.00003) while blood pressure remained unchanged at the ≥2-year follow-up. No severe side effects or drug abuse was detected.

3.6.2. Amphetamines
Long-term use of amphetamines reveals similar side effects as with MPH. Two treatment studies mainly focused on the long-term safety and tolerability of amphetamines (Biederman et al., 2005; Weisler et al., 2005) (Table 2). The first study addressed the long-term cardiovascular effects of MAS XR (n=223) (Weisler et al., 2005). Patients with ADHD...
were titrated with MAS XR from 20 mg/d for 1 week, with subsequent steps up to 60 mg/d to obtain an optimal effect. Safety assessments included spontaneously reported adverse events, laboratory assessments, and monitoring of vital signs. After 24 months, small, but significant changes in cardiovascular parameters were observed. The most common treatment-related adverse events were dry mouth, infection, insomnia, anorexia/decreased appetite, headache, and nervousness (Biederman et al., 2005).

Similar findings were reported from a 12-month open-label extension of a 4-week RCT study of LDX efficacy (Ginsberg et al., 2011) (N=345 adults) (Table 2). They found LDX to be associated with insomnia, headaches, dry mouth, decreased appetite, and irritability, and also with more frequent upper respiratory tract infections (21.8%) which have not been reported in other stimulant or atomoxetine studies.

Another potential adverse effect of stimulant medication could be the exacerbation or emergence of psychopathology. In contrast to this prediction, one RCT reported greater reductions of obsessive-compulsive symptoms and self-concept problems in the MPH group compared to placebo, but no changes in anxiety, depression, anger and hostility, phobia, paranoid ideations and psychoticism (Rosler et al., 2010). Similarly, another study found no significant difference at endpoint between MPH and placebo for anxiety and depression scores (Biederman et al., 2010a) (Table 1). Some studies have reported increased nervousness, irritability and sleep disturbances as adverse events of stimulants (Adler et al., 2011; Biederman et al., 2005; Ginsberg et al., 2011) (Table 2 and Supplementary Table 1).

A naturalistic study assessed psychopathology over a 10-year follow-up (n=112) (Biederman et al., 2009) (Supplementary Table 1). It found no increased risk for depression or anxiety disorders due to the pharmacologic treatment of ADHD, but those previously treated with stimulants, were significantly less likely to develop depressive, anxiety and disruptive behavior disorders compared with subjects with ADHD not treated.

Few studies have examined the impact of stimulant pharmacotherapy for ADHD on sleep and sleep-disturbances in adults. In a 24-week RCT of OROS MPH Biederman et al. (2010a) reported a higher rate of insomnia in the treated group than the placebo group (19% vs. 3%). Young et al. (2011) found similar rates of insomnia (13% vs. 6%) at the 24-week end point of their RCT of atomoxetine (Supplementary Table 2). In contrast Rosler et al. (2009) and Adler et al. (2009a, 2009b) did not find any significant effects on sleep for MPH ER and atomoxetine, respectively. No long-term data were found foramphetamine products.

3.6.3. Atomoxetine

Although atomoxetine is not considered a stimulant, the drug has many similar side effects (Supplementary Table 2). Two long-term RCTs found a slight increase in blood pressure and heart rate during treatment with atomoxetine (Adler et al., 2009a; Young et al., 2011). At the 10-week time point in the study Adler et al. (2009a), diastolic blood pressure increased by 1.7 mm Hg for atomoxetine vs. 0.2 mm Hg for placebo, but the difference was not statistically significant at 6 months. However, heart rate increased by 3.8 beats/min for atomoxetine vs. 1.5 beats/min for placebo and was statistically significant at the 6-month end point. Dose titration started at 25 mg/d with titration up to 100 mg/d if tolerated. The rate of completion was 38% for the atomoxetine group and 45% for placebo. Discontinuations due to adverse events were 17.2% and 5.6% for atomoxetine and placebo, respectively (p=0.001). The following treatment-emergent adverse events (reported by at least 5% of patients) were significantly more common in the atomoxetine group at the 10-week time point: nausea, dry mouth, fatigue, decreased appetite, urinary hesitination, and erectile dysfunction. At the 6-month evaluation, these adverse events and dizziness were more frequent in the atomoxetine group (Adler et al., 2009a).

Young et al. (2011) found statistically significant increases of systolic blood pressure (supine positions; 2.6 for atomoxetine vs. 0.1 mm Hg for placebo, p=0.009), diastolic blood pressure (2.6 vs. 0.03 mm Hg; p<0.001), and heart rate (4.4 vs. −0.6 beats/min; p<0.001) at 24 weeks of treatment. This study also reported changes in ECG parameters (reduced PR interval; −3.7 vs. 1.4 ms, and elongated QTcB interval; 6.6 vs. 0.4 ms). One serious adverse event of atrial fibrillation and one of supraventricular tachycardia was reported in the sample of 266 patients. In this study of once daily medication, tolerability of two different dose-titration regimes was compared: the standard titration (on-label) vs. a slower titration strategy. They found no significant changes in depressive or anxiety measures, but discontinuation was more frequent for on-label vs. slow titration due to adverse events, although the rates of patients experiencing adverse events were similar. The most common adverse events were dry mouth, nausea, and decreased appetite (Young et al., 2011) (Supplementary Table 2).

In a 4-year follow-up study (Adler et al., 2008) of patients from an initial larger RCT, 125 patients remained in a subsequent open-label trial with up to 221 weeks of treatment. Heart rate slightly increased from baseline by 4.4 beats/min (p>0.001), diastolic blood pressure increased 1.6 mm Hg (p=0.001), and systolic blood pressure increased 2.0 mm Hg (p=0.002). There were no clinically significant changes in QTcF (corrected QT interval by Fridericia’s formulae) reported at the end-point time. Weight loss was statistically significant (mean change −0.94 kg, p<0.001).

3.7. Naturalistic studies of adverse effects

The present review also includes naturalistic studies addressing long-term effects of stimulant drug therapy that have not been investigated in the RCTs or RCT extension studies (Supplementary Table 1). A longstanding concern about stimulants’ potential effects on growth in children and adolescents arose from their known anorexic effects. Consistent with this, all long-term RCTs found in our search reported decreased appetite in the treatment group (Table 1 and Supplementary Table 2).

Perhaps the most important clinical question about stimulants and growth is their effect on ultimate growth attained in adulthood. Klein and Mannuzza (1988) and Hechtman et al. (1984) found that individuals with ADHD who showed growth deficits while treated with stimulants as
children no longer showed such deficits as adults (Supple-
mentary Table 1). Kramer et al. (2000) reported a prospec-
tive, long-term follow-up study of 97 adults between the
ages of 21 and 23 years who had been treated clinically with
MPH for an average of 36 months in childhood. Because
these subjects did not differ in average height or weight
from family, community, or un-medicated control, it seems
reasonable to conclude that their MPH treatment in child-
hood did not lead to growth deficits in adulthood. Biederman et al. (2010b) reported naturalistic longitudinal
data from 124 ADHD patients that had been followed from 10
to 11 years into adulthood. They found no differences in
final adult height between ADHD patients who had and had
not been treated with stimulants in childhood.

Several authors have found an increased proportion of
substance use disorder co-morbid with ADHD in adults
(Biederman et al., 2006; Gjervan et al., 2011; Halmoy et al.,
2009). In a prospective follow-up study Biederman et al. (2008)
reported no significant relation between stimulant treatment and alcohol, drug, or nicotine use
disorders (Supplementary Table 1), even when the analyses
adjusted for conduct disorder. Similar findings were
reported in a retrospective study of 206 ADHD adults
(Faraone et al., 2007a). This study showed a high degree
of consistency across substances of abuse in finding no link
between prior pharmacotherapy for ADHD and subsequent
substance use disorders.

Two articles from one large epidemiological cohort study
in the USA recently explored whether current use of
stimulants and atomoxetine is associated with increased
risk of serious cardiovascular events. One study of children
and young adults (n=1,200,438 subjects, ages of 2-24 years)
(Cooper et al., 2011), and another of young and middle-
aged adult medication users (n=150,359, aged 25-64 years)
(Habel et al., 2011) identified serious cardiovascular events
(sudden cardiac death, acute myocardial infarction, and
stroke) from health-plan data and vital records. End points
were validated by medical record review. The child and
young adult study evaluated 2,579,104 person-years of
follow-up, including 373,667 person-years of current use
of ADHD drugs. The adult study included 806,182 person-
years of follow-up (median, 1.3 years per person).

In the 25-64 age group, the multivariate-adjusted rate
ratio of serious cardiovascular events for current use vs.
non-use of ADHD medications was lower than 1, possibly due
to healthy-user bias (Habel et al., 2011). The adjusted risk
ratio was lower (0.77) among new users of ADHD medica-
tions, which also can be attributed to healthy-user bias.
Importantly, the risk of serious cardiovascular events was
similar among patients receiving ADHD medications and
controls not using these drugs. The adjusted risk ratio for
current use vs. remote use was 1.03 (95% CI, 0.86-1.24); and
for new use vs. remote use, 1.02 (95% CI, 0.82-1.28). These
results suggest that ADHD medications are not associated
with an increased risk for serious cardiovascular events.

Another large cohort study evaluated 43,999 new users of
methylphenidate (MPH) based on administrative data from
a five-state Medicaid database and a US 14-state commercial
insurance database (Schellemann et al., 2012). The authors
sought to determine whether the use of MPH in adults is
associated with elevated rates of serious cardiovascular events
compared with rates in 175,955 non-users. MPH users were
matched on state, sex, and age to as many as four comparison
non-user subjects. Events recorded were (1) sudden death or
ventricular arrhythmia, (2) stroke, (3) myocardial infarction,
and (4) a composite end point of stroke or myocardial
infarction. The age-standardized incidence rate per 1000
person-years of sudden death or ventricular arrhythmia was
2.17 in MPH users and 0.98 in non-users, which yielded an
adjusted hazard ratio of 1.84 (95% CI = 1.33-2.55). Although
these data suggest that MPH use increased the risk for sudden
death or ventricular arrhythmia, the risk decreased with
increasing dose, which weakened the inference that the
observed association with stimulant medication was causal.
There were no differences between MPH users and non-users
for stroke, myocardial infarction, and the composite endpoint
of stroke or myocardial infarction.

4. Discussion

4.1. Long-term treatment outcomes

Our review of long-term, follow-up studies of the pharma-
cologic treatment of ADHD adults presents an emerging
literature that documents the long-term efficacy of ADHD
medications in several ways. All the RCTs found that ADHD
medications were significantly more efficacious than pla-
cebo. These significant differences favoring medication
were maintained through the end of the follow-up period.
Likewise, all the open label extension studies showed that
the efficacy demonstrated during the acute placebo con-
trolled phase was either maintained or improved during the
follow-up period. Finally, some naturalistic studies suggest
that the pharmacological treatment of ADHD youth does not
exacerbate comorbid psychopathology and may reduce their
subsequent risk for depression and substance use disorders.

Although these efficacy findings are reassuring, they are
limited in several ways. Most notably, the evidence base is
sparse, with only five RCTs, 11 open label extension studies
and 15 naturalistic studies, and this small number of studies
and diversity of study designs does not allow for a meta-
analytic approach.

The long-term studies also show high rates of non-
adherence to ADHD medications (Tables 1 and 2). If non-
adherence is associated with poor efficacy, then long-term
studies might overestimate the magnitude of long-term
efficacy. For example, Bejerot et al. (2010) found that only
50% remained in treatment after 2 years; 15% dropped out
because of lack of efficacy and the amount of clinical
response over the first 6-9 months predicted adherence
treatment at the 2 year follow-up. This suggests that more
work is needed to understand the implications of non-
adherence in long-term studies of efficacy and to improve
adherence among adults with ADHD.

Another concern is that placebo effects were fairly large
with RCTs suggesting placebo response rates as high as 42%.
Although high placebo response rates do not challenge the
statistical significance of efficacy effects, they do limit the
relative clinical efficacy as indicated in the NNT statistics,
which suggest that between four and six patients need to be
treated to achieve a good, medication-related, long-term
treatment response. It is also notable that the long-term
placebo response rates are much higher than short-term
placebo response rates. For example, in the studies reviewed by Faroone and Glatt (2010), short-term placebo response rates from stimulant studies of adult ADHD range from 7% to 39% with a mean of 24.7%. This suggests that there may be an incremental placebo effect with time, although more work is needed to evaluate this idea. Furthermore, although we have not performed any systematic analysis to search for possible publication bias, this cannot be excluded.

4.2. Side-effects and special concerns

Regarding adverse events, it is reassuring to know that the adverse events most commonly reported with long-term ADHD medication treatments are relatively minor (see Supplementary Table 2). It is also reassuring to know that long-term treatment does not markedly exacerbate or cause psychopathology, although there is some risk for increases in nervousness, irritability and sleep disturbance. A guideline group of the European Network for Hyperkinetic Disorders (EUNETHYDIS) have reviewed the literature on children and given guidelines on managing adverse effects of medication for ADHD that provides useful information on the long-term side effects in treated children and adolescents (Graham et al., 2011). Although the mechanism of action of stimulants has raised concerns about effects on growth, the cardiovascular system and substance abuse risk, these concerns have been mostly allayed by long term studies.

4.3. Effect on growth

Regarding growth, it is clear that stimulants given to growing children lead to delays in normal gains in height and weights, which either attenuates over time or reverse after discontinuation. A quantitative review by Faroone et al. (2008) showed that growth deficits are relatively larger in children compared with adolescents and that treatment cessation typically leads to a normalization of growth trajectories. Deficits in height and weight were also correlated, suggesting that failure to make expected height gains could be attributed to the lack of interest in eating and inadequate nutrition that contributes to weight loss (Faroone et al., 2008). If that is true, then it is possible that clinical strategies used to improve nutrition and encourage weight gain would reduce deficits in expected height, but no study directly examined this hypothesis. Thus, although the attainment of normal adult height is not compromised in naturalistic studies, physicians still need to monitor the growth of stimulant treated ADHD youth. In contrast, growth deficits have not been observed in studies of atomoxetine that prospectively followed children for up to 5 years (Donnelly et al., 2009; Spencer et al., 2007; Wilens et al., 2006).

4.4. Cardiac risk

Data from large population based studies (Cooper et al., 2011; Habel et al., 2011) could not demonstrate any increased risk for sudden death or ventricular arrhythmia with use of central stimulants. Schelleman et al. (2012) found initiation of MPH associated with a 1.8 fold risk in sudden death or ventricular arrhythmia; however lack of a dose-response relationship suggested this relation was not causal. Even though there is some variability in the reviewed studies, our review suggests that stimulants and atomoxetine are associated, on average, with only small elevations in blood pressure and heart rate. These medications should not be used with patients having pre-existing cardiac abnormalities, and cardiovascular parameters should be monitored in stimulant treated adults with ADHD, especially those with borderline abnormal cardiovascular signs.

4.5. Risk of substance use disorders

One well replicated fact about ADHD is that it predicts substance use disorders. This has been shown conclusively in a meta-analysis of prospective longitudinal studies of ADHD youth (Lee et al., 2011), and confirmed in cross-sectional studies of ADHD adults (Arias et al., 2008; Daigre Blanco et al., 2009; Faroone et al., 2007a, 2007b; Faroone and Wilens, 2007). Because stimulants are potentially abusable one important concern has been if long-term stimulant treatment could lead to substance use disorders. To clarify former contradictory findings from prospective, naturalistic follow-up studies, Wilens et al. (Faroone and Wilens, 2003; Wilens et al., 2003) conducted a meta-analysis and found that stimulant treated ADHD youth were 50% less likely to develop substance use disorders than ADHD youth that had not been treated. The authors concluded that, rather than causing substance use disorders, the evidence suggested that stimulant medications protect ADHD youth from developing substance use disorders. There were, however, differences when the authors stratified studies by those that followed children into adolescence and those that completed follow-up in adulthood. When analyses were limited to studies that followed children into adulthood, stimulant treated ADHD youth were only 1.4 times less likely to develop substance use disorders in adulthood compared with ADHD youth that had not been treated with stimulants. A retrospective study by Faroone demonstrated no link between prior pharmacotherapy for ADHD and subsequent substance use disorders (Faroone et al., 2007a).

We do not know why stimulant therapy protects against substance use disorders in adolescence, or why this protective effect disappears in adulthood. If the effect is mediated by symptom reduction, one possibility may be that the efficacy of stimulants seems to be higher for children than for adults, as seen if one compares medication effect sizes reported from meta-analyses of youth (Faroone and Buitelaar, 2010) and adults (Faroone and Glatt, 2010). Furthermore, due to parental monitoring, treatment compliance and hence efficacy are greater for youth than adults. Although the current literature is reassuring that treating ADHD with stimulants do not increase the risk for substance use disorders, clinicians should be alert to the serious problem of the misuse and diversion among ADHD adults, especially in the college population (Faroone and Wilens, 2007; Kaye and Darke, 2012; Wilens et al., 2008).

4.6. Conclusions and recommendations

The long-term goal of pharmacotherapy is to reduce the functional impairments associated with ADHD. Although the
relevant literature is small and primarily naturalistic, it suggests that the pharmacologic treatment of ADHD leads to higher educational levels and occupational status, better self-esteem, fewer accidents, and less delinquency. Although some studies find no long-term effects of medication on functional impairments, no studies suggest that pharmacologic treatment worsens impairments. Some negative findings are to be expected due to selection biases, the use of small samples and confounding of naturalistic studies. Because more severely affected individuals are overrepresented among treated patients, if appropriate statistical procedures are not implemented, naturalistic studies can erroneously conclude that treatment is ineffective or even worsens outcomes (Faraone et al., 1992; Kessler et al., 2005).

There are two main clinical implications from our review. First, clinicians can be confident in communicating to adult ADHD patients that, if they maintain treatment, their long-term prognosis is good, taking into account how “long-term” has been defined in our review. Second, they can be equally confident that the burden of adverse events is modest if subjects have been screened for pre-existing cardiac conditions. If clinicians are not achieving the positive outcome suggested by this review, they should determine if their dosing regimens are not in accord with what has been used in the outcome studies reviewed and also assess adherence to treatment before concluding about the degree of response for the individual patient.

The conclusions of our review should be interpreted in the context of several limitations of the studies we reviewed. Unlike short-term clinical trials, which typically focus on a narrow set of outcomes such as counts of ADHD symptoms, the long-term studies comprise a substantial diversity of outcome measures and study designs. This diversity does not allow for a meta-analytic approach, which would have been preferable. Moreover, several issues require further study. Importantly, no generally accepted definition exists for what is regarded as a long-term study, as this will obviously depend on the condition that is being treated. At a time when ADHD was considered a self-limiting developmental disorder of childhood, the need for studies of many years duration was difficult to imagine or fund. In the Multimodal Treatment of ADHD study, intermediate duration was defined as between 3 and 9 months and long-term effects were measured at 14 months and beyond (Molina et al., 2009; Swanson and Hechtman, 2005). Here, we adopted a practical compromise by including studies down to 24 weeks of duration. Otherwise, we would have been left with very little data. However, as recently accumulated knowledge has transformed our view of ADHD as more of a life-long condition, this knowledge gap has become more obvious. Thus, the time perspective for treatment studies of ADHD should be no different from studies on schizophrenia, diabetes mellitus or hypertension. In all these conditions, treatment effects should be studied for decades rather than months. Still, a recurrent theme in nearly all systematic reviews, within all therapeutic areas, performed by the Cochrane initiative is the shortage of long-term treatment data (www.Cochrane.org).

Optimally, all end points in RCTs of ADHD should be validated. However, at the current state, this appears not to be feasible. Concrete and simple outcome variables on large samples may be preferable to sophisticated psychological measures with unclear ecological validity. Thus, the information from prescription databases, linked to health registries, could give information on a sample size and time scale not feasible for conventional RCTs.

In many areas of medicine, the ethical issues involved in performing long-term RCTs are currently being discussed. Given the established efficacy and safety profile of ADHD medications, it is hard to imagine ethical committees approving the use of placebos for many years. That leaves us with open-label extensions and naturalistic studies, along with their concomitant biases and confounds. The Multimodal Treatment of ADHD study illustrates the difficulties in drawing causal inferences from such research designs. While the RCT period only lasted 14 months, additional outcomes from that study have been measured after 8 and 12 years. This has generated additional insights and, unfortunately, considerable confusion (Molina et al., 2009; Swanson and Hechtman, 2005).

In ADHD treatment, as well as in many other therapeutic areas, health economic perspectives on interventions are increasingly requested and discussed. It is expected that a treatment should contribute to a measurable increase in quality adjusted life years or other measures of long-term benefit. Few of the studies cited here contain such data or are suitable for calculation of such treatment effects. Another limitation of current long-term studies has been the focus on ADHD symptoms as a measure of efficacy. Although such data are essential, clinicians and patients are more concerned about the functional implications of drug treatment. Future work should incorporate more measures of functional impairment. It should also evaluate the degree to which the patient’s symptoms and behavior have been optimized, rather than simply evaluating whether they have achieved an arbitrary response criterion. Expectations from both patients and clinicians are that treatment will be beneficial in terms of long-term outcome in important life domains, and that the risks associated with treatment will not exceed these benefits. Thus, the goal of ADHD treatment should be the remission of symptoms and impairments and new research protocols are urgently needed to address these goals (Ramos-Quiroga and Casas, 2011).

Role of funding sources

MF has received a PhD-grant from the Norwegian Extra Foundation for Health and Rehabilitation. The funding sources have no role in the preparation of this manuscript.

Contributors

All authors performed literature searches and contributed equally to the writing of the manuscript.

Conflict of interest

Dr. Fredriksen has no financial relationship with any company whose products are mentioned in this paper, and nothing to disclose. In the past year, Dr. Faraone received consulting income and research support from Shire, Otsuka and Alcobra and research support from the National Institutes of Health (NIH). In previous years, he received consulting fees or was on Advisory Boards or participated in continuing medical education programs sponsored by Shire, McNeil, Janssen, Novartis, Pfizer and Eli Lilly. Dr. Faraone receives royalties from books published by Guilford Press: Straight Talk.
During the past year, Dr. Haavik has received honoraria for a lecture from Janssen-Cilag.
None of the other authors have received any financial or material support from any pharmaceutical companies during the past year.
In previous years, Dr. Haavik has been on the Advisory Boards or participated in continuing medical education programs sponsored by Novartis, Lilly and Janssen-Cilag.
In previous years, Dr. Halmey has received honoraria for one lecture from Janssen-Cilag. She reports no financial relation or conflicts of interest that could appear to have influenced the submitted work.
None of the authors are employees, stock or shareholders of any pharmaceutical companies or other companies whose products are mentioned in this paper.

Acknowledgments
The authors thank Vigdis S. Knutsen at the Norwegian Centre for Research, Education and Service for assistance with the literature search.

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.euroneru.2012.07.016.

References

Supplementary Table 1
Observational, naturalistic studies and other designs

<table>
<thead>
<tr>
<th>Study and objective</th>
<th>Sample</th>
<th>Duration of treatment and design</th>
<th>Medication</th>
<th>Measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies on effectiveness and safety
Hechtman et al. (1984)
Assess young adult outcome of hyperactive children who received long-term stimulant treatment</td>
<td>N=88, ADHD Childhood ADHD (DSM-III), with hyperactivity Untreated group (n=68), and treated group methylphenidate (MPH) (n=20), matched control group (n=20) Males Adults, mean age 21.8 years</td>
<td>At least 3 years of treatment Follow-up study with two comparison groups</td>
<td>Case group being treated with methylphenidate (MPH)</td>
<td>Demographics, school questionnaire, work and vocational plans, employers questionnaire, car accidents, physiological and psychiatric variables, drug use, antisocial behavior, social skills, self-esteem</td>
<td>Stimulant-treated hyperactive subjects function significantly worse in school, work, and have more personality disorders matched to normal controls without ADHD. Stimulant treated children with ADHD had less car accidents and later delinquency, more positive view of childhood, and better social skills and self-esteem than untreated counterparts. No difference in vital signs between groups; weight, height, pulse, blood pressure. No serious events vital sign events reported.</td>
</tr>
<tr>
<td>Bejerot et al. (2010)
Investigate factors associated with adherence to stimulant treatment, side effects and reasons for discontinuation</td>
<td>N=133 patients at an specialized clinic, ADHD (DSM-IV) Male 53% (n=71) Adults (≥18 years of age), mean age 31.1±10.9 years</td>
<td>2 years Naturalistic follow up data</td>
<td>CS; MPH 65% (n=86) DEX 35% (n=47)</td>
<td>Questionnaire (The Targeted Attention-deficit Disorder Symptoms Rating Scale); improvement of hyperactivity, impulsivity, irritability, distractibility, structure/organizational problems, inattention, and restlessness</td>
<td>80% successfully treated with stimulants at the 6- to 9-month follow-up. 50% remained in treatment after 2 years. 45% were treated for co-morbid anxiety and/or depression. 15% dropped out because of lack of efficacy. The amount of clinical response over the first 6 to 9 months (but not at 6 weeks) predicted adherence to treatment at 2 years. Drug abuse was not detected in this cohort. The patients’ heart rate increased from a least squares mean ±SE: 70 ± 2.2 to 80 ±2.1 bpm (P = .00003), while blood pressure remained unchanged at the ≥2-year follow-up. No severe side effects detected.</td>
</tr>
<tr>
<td>Weiss et al. (2010)</td>
<td>N=725</td>
<td>8 months MAS XR, titration to ADHD-RS-IV, CGI,</td>
<td></td>
<td></td>
<td>Significant clinical improvement, mean symptom change 63%.</td>
</tr>
<tr>
<td>Study</td>
<td>Population Description</td>
<td>Study Design</td>
<td>Main Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate effectiveness of long-acting amphetamines</td>
<td>(n=671 with complete data) ADHD (DSM-IV-TR) Male 48.6%, Mean age 36.8 years; range 18-78</td>
<td>Prospective naturalistic open-label study on treatment as usual, individual optimum interval (10-60mg/d)</td>
<td>Health related quality of life scales (SF-36v2, HRQL) 75% responders on CGI (much or very much improved), 4.2% rated as worse. Age, female gender, severity of illness, and treatment-naive status moderate improved symptom outcome. Improvement of symptoms was associated with immediate improvement in quality of life. Self-report of attention was a stronger mediator of ADHD-specific quality of life outcomes than disruptive behavior. No side effects reported.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adler et al. (2011)</td>
<td>N=550 ADHD (DSM-IV), Male 52%, Adults mean age 39 years; range 18-65 years</td>
<td>6- and 12- months Prospective open-label observational study, OROS MPH dose-titration, flexible dose; 36mg/d, 18mg increments every 7 day until 108mg/d, or limiting adverse events</td>
<td>ADHD-symptoms, adverse events vital signs laboratory measures Measures of efficacy indicated improvement. OROS MPH in flexible dosage range was well tolerated for 1 year. Final dosages 36mg/d (22.4%), 54mg/d (25.1%), 72mg/d (22.0%), 90mg/d (17.1%), 108mg/d (13.5%). Completers: 57% (146/258) completed 6-months treatment, and 44% (129/292) 12-months. Mean weight decrease 2.3 kg. Laboratory values not significant changes (NS). Adverse events (AE): decreased appetite (26.7%), headache (24.0%), insomnia (20.7%). No serious AE. Increased mean systolic BP 2.6 mm Hg, diastolic BP 1.9 mm Hg, pulse (4.1 beats per minute). ECG, changes n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powell et al. (2011)</td>
<td>N=410 Patients attending a specialized ADHD clinic for children/adolescents. ADHD (DSM-IV) Male 90%, Age 7-21 years entering the study</td>
<td>Mean duration of treatment, 6 years; range 0.9-16.1 years Prospective naturalistic observational study CS. Average stimulant dose (in MPH equivalents); 0.5-1.5 mg/kg for 83%, <0.5mg/kg for 12%, >1.5 mg/kg for 3%</td>
<td>Database from medical charts; Strengths & Difficulties Questionnaires (SDQ), Children’s Global assessment scale (CGAS), ADHD-RS Dosages corresponded to guidelines, but are dynamic over time and depend on individual factors. Significant, though small increase in average dosage over time (0.11 mg/kg). Age at start inversely correlated with an increase in average dose. Participants with low IQ had larger dosage increases. Gender did not influence dosage. No side effects reported.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies on education, occupation and co-morbidity</td>
<td>N=169 children at Follow up data on CS medicated group Subtests of the test</td>
<td>The medicated group achieved better academic outcomes (by</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Objectives</td>
<td>Methods</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examine relation between childhood stimulant treatment and academic functioning</td>
<td>examine the relation between childhood stimulant treatment and academic functioning</td>
<td>baseline, n=90 at follow up ADHD (DSM-IV) Male 89% Mean age at baseline 9.1 years, at reevaluation, 18.4 years; range 16-22 years</td>
<td>average 9.13±1.5 years later Mean duration treatment with CS, 30.4 months; range 1-76 months Follow up study with case control (n=48) on stimulants at least one year</td>
<td>Wechsler Individual Achievement Test-II (WIAT-II) high school grade point average (GPA) number of retentions in school</td>
<td>WIAT-II subtests) and higher school GPA, than the unmedicated group (p < .05), but not as well as the community control group.</td>
</tr>
<tr>
<td>Biederman et al. (2009)</td>
<td>Examine association between stimulant treatment and subsequent co-morbid psychiatric disorders</td>
<td>N=112 at 10-years follow-up (80% of N=140, baseline sample). ADHD (DSM-III-R) Consecutively referred, Controls, n=105 (88% of n=120) without ADHD Mean age 22; range 6-17 years baseline</td>
<td>10-year prospective follow-up study with comparison group</td>
<td>CS treatment</td>
<td>Assessment of co-morbidity and academic performance</td>
</tr>
<tr>
<td>Halmøy et al. (2009)</td>
<td>Determine effects of symptom profile, co-morbid psychiatric problems, and treatment on occupational outcome</td>
<td>N=414 ADHD (ICD-10 criteria, and inattentive subtype, DSM-IV). National patient registry and referred from clinicians Male 52% Adults, mean age 34.5±10.4 years</td>
<td>Duration of treatment not reported. Cross-sectional and retrospective data collection</td>
<td>CS treatment; 75% current medicated, and 93% treated lifetime</td>
<td>Questionnaires; Wender Utah Rating Scale (WURS) Adult ADHD rating scale (ASRS) Mood Disorder Questionnaire (MDQ) Co-morbid conditions treatment history work status</td>
</tr>
<tr>
<td>Gjervan et al. (2011)</td>
<td>Investigate impairment and occupational status</td>
<td>N=149, ADHD (ICD-10, including inattentive subtype, DSM-IV) clinically referred sample of 471 invited to</td>
<td>Duration of treatment; 60% of patients being medicated more than 12 months.</td>
<td>CS medication; 65% current medicated, and 90% treated lifetime</td>
<td>Data from medical records and self-report questionnaires; ASRS, SCL-90-R</td>
</tr>
</tbody>
</table>
and predictors of occupational outcome | participate Male 47% Adults, mean age 33.7±10.7 years | Cross-sectional and retrospective follow-up data collection | Co-morbid conditions treatment history occupational status | Age at first treatment with central stimulants and inattentiveness negatively predicted occupational outcome. No effect of co-morbidity.

Studies on substance use

Barkley et al. (2003)
Examine impact of stimulant treatment during childhood for substance use by adulthood

N=147 clinic-referred hyperactive children (DSM-III-R) Adults at follow-up, mean age: 21 years; range 19-25
13-years CS medication
Interview about use of various substances and duration of stimulant treatment
Duration of stimulant treatment not associated with frequency of drug use by adulthood. Stimulant-treated children had no greater risk of ever trying drugs by adolescence or any greater frequency of drug use by young adulthood. Stimulant treatment in high school did not influence drug use in adulthood. Stimulant treatment in either childhood or high school was not associated with any greater risk for mental disorders. No association between CS treatment of children with attention-deficit/hyperactivity disorder and subsequent substance experimentation, use, dependence, or abuse in adulthood.

Faraone et al. (2007)
Assess the impact of prior ADHD pharmacotherapy on substance use disorder (SUD)

N=206, n=79 late onset ADHD, male 48%, n=127 full ADHD, (DSM-IV) Male 53% Subjects recruited both from referrals and by advertisements Adults, mean age in the current treatment group 36.2±11.3, past treatment 31.5±10.8 years; range 18-55 years
Cross-sectional and retrospective data collection. 3 groups; no treatment, past treatment (mean duration 5.3±6.2 years), and past-and current treatment (mean duration 6.9±7.8 years)
Any medication prescribed to treat ADHD defined as pharmacological treatment
Structured Clinical Interview for DSM-IV (SCID) Drug Use Screening Inventory (DUSI)
Prevalence of use, preference for cigarettes, alcohol and drugs of abuse, complications from use, and motivation for use
No differences found in prevalence of cigarette smoking, alcohol or drug abuse or dependence, as well as well for 1-month prevalence of any use or use more than 20 times, between the three groups. Support for the hypothesis that pharmacotherapy does not cause subsequent SUDs.

Biederman et al. (2008)
Examine

N=112 at follow-up (80% of N=140, baseline sample) ADHD (DSM-III-R)
10-year CS treatment
Assessment of co-morbidity and substance use
At follow up 73% (N=82) of previously treated with stimulants, and 22% (n=25) were on stimulant treatment.

No significant associations between stimulant treatment and
<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Size</th>
<th>Follow-up Details</th>
<th>Measurements</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association between stimulant treatment in childhood and subsequent SUD</td>
<td>Males only</td>
<td>Mean age 22; range 6-17 years baseline</td>
<td>Models were adjusted for conduct disorder</td>
<td>Alcohol, drug, or nicotine use disorders.</td>
</tr>
<tr>
<td>Studies on growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klein and Mannuzza (1988) Examine the impact of stimulant treatment on stature</td>
<td>N=61 hyperactive boys (DSM-III) Control group, n=99</td>
<td>Naturalistic follow up with case controls in young adulthood. Average 2.2 years, ranging 6 months – 5 years</td>
<td>Height measurements</td>
<td>No significant difference in height between the treated patients and controls, both groups were at the national US norm in stature. MPH therapy does not compromise final height. A compensatory growth rate, or growth rebound, appears to occur following discontinuation of stimulant therapy.</td>
</tr>
<tr>
<td>Kramer et al. (2000) Examine association between MPH and adult height and weight</td>
<td>N=97 boys (DSM-IV) Behavior-problems Mean age at follow up; range reevaluation 21-23 years</td>
<td>Naturalistic follow up MPH treatment for an average of 36 months</td>
<td>Height measurements</td>
<td>Medicated subjects’ age, height, and parental socioeconomic status at referral predicted 44.8% of variation in adult height. Medicated subjects’ birth weight, age, height and weight at referral, and parental socio economic status predicted 61.8% of variation in adult weight. Initial nausea and vomiting side effects predicted 4.4% incremental variation in adult height. MPH maintenance dose predicted 3.2% incremental variation in adult weight. Medicated individuals who had attained their final stature did not differ in average height or weight from family, community, or unmedicated controls.</td>
</tr>
<tr>
<td>Biederman et al. (2010) Assess effect of ADHD and treatment on growth</td>
<td>ADHD group n=124 control n=137 Males and females 10-11 years Follow-up study Two identically designed, longitudinal, case-control studies</td>
<td>Stimulant treatment Assessment of height and weight in children with ADHD grown up Linear growth curve models</td>
<td>Height measurements</td>
<td>No evidence that ADHD nor stimulant treatment was associated with differences in growth. Among subjects with ADHD, major depression was associated with significantly larger weight in females and smaller height in males.</td>
</tr>
<tr>
<td>Studies on cardiovascular risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper et al. (2011)</td>
<td>Population sample of 1,200,438 subjects. 2,579,104 person-years of follow-up CS medication; person-years of</td>
<td>Electronic registry data, health care</td>
<td>Total cohort had 3.1 cardiovascular events per 100,000 person-years.</td>
<td>Total cohort had 3.1 cardiovascular events per 100,000 person-years.</td>
</tr>
</tbody>
</table>
Evaluate risk of serious cardiovascular events on treatment with stimulant drugs

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Number of Participants</th>
<th>Follow-up</th>
<th>Methodology</th>
<th>Outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habel et al. (2011)</td>
<td>Current use of ADHD medications with risk of serious cardiovascular events in young and middle-aged adults</td>
<td>ADHD medication users (n = 150,359)</td>
<td>806,182 person-years of follow-up</td>
<td>Retrospective, population-based cohort study from registry data</td>
<td>Serious cardiovascular events, including MI, SCD, or stroke</td>
<td>Current use: 107,322 person-years (median, 0.33 years); MI incidence per 1000 person-years of 1.34 (95% CI, 1.14-1.57), 0.30 (95% CI, 0.20-0.42) for SCD, and 0.56 (95% CI, 0.43-0.72) for stroke. Adjusted RR for new users of ADHD medications, 0.77 (95% CI, 0.63-0.94). Adjusted RR for current use vs. remote use, 1.02 (95% CI, 0.82-1.28). Current or new use of ADHD medications, compared with nonuse or remote use, was not associated with an increased risk of serious cardiovascular events.</td>
</tr>
<tr>
<td>Schellemann et al. (2012)</td>
<td>Determine whether use of MPH in adults is associated with elevated rates of serious cardiovascular events</td>
<td>N = 43,999 new MPH users, n= 175,955 matched nonusers</td>
<td>Retrospective data from a five-state Medicaid database and a 14-state commercial insurance database (US)</td>
<td>Events of primary interest: sudden death (SD) or ventricular arrhythmia (VA), stroke, myocardial infarction (MI), and a composite endpoint of stroke or myocardial infarction</td>
<td>The age-standardized incidence rate per 1,000 person-years of SD or VA was 2.17 (95% CI, 1.63-2.83) in MPH users and 0.98 (95% CI, 0.89-1.08) in non-users, for an adjusted hazard ratio of 1.84 (95% CI, 1.33-2.55). Dosage was inversely associated with risk. Adjusted hazard ratio for stroke, MI, and the composite endpoint of stroke or myocardial infarction did not differ significantly from 1. Initiation of MPH was related to a 1.8 fold risk in sudden death or ventricular arrhythmia; however lack of dose-relationship suggests not being a causal association.</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 2

Adverse events in the RCTs

<p>	Symptom
	Rosler et al. (2009); Rosler et al. (2010) (1-24 week)
Symptom	MPH ER (n=241) %
Cold/infection/allergy	37
Nasopharyngitis	
Upper respiratory tract infection	
Increased appetite	6
Decreased appetite	38*
Headache	52
Gastrointestinal	27
Nausea	9
Vomiting	0.4
Diarrhoea	9
Constipation	
Gastric discomfort	10
Insomnia	25
Somnolence/Drowsiness	30
Shortened sleep	15
Abnormal dreams	
Decreased energy/Fatigue	8
Increased energy	5
Cardiovascular	13
Chest pain	7*
Palpitation	23*
Tense/jittery	24
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Treatment</th>
<th>Placebo</th>
<th>(p < 0.05)</th>
<th>(p < 0.001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agitated/irritable</td>
<td>19</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Sad/down</td>
<td>19</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxious/worried</td>
<td>15</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomic Drool/sweat</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td>12*</td>
<td>1</td>
<td>6.0*</td>
<td>0.0</td>
</tr>
<tr>
<td>Hot flashes</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chills</td>
<td>9</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucosal dryness/dry mouth</td>
<td>30*</td>
<td>16</td>
<td>32*</td>
<td>6</td>
</tr>
<tr>
<td>Excessive thirst</td>
<td>24</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizzy/lightheaded</td>
<td>6</td>
<td>0</td>
<td>10*</td>
<td>4</td>
</tr>
<tr>
<td>Neurological</td>
<td>15</td>
<td>3</td>
<td>7.1**</td>
<td>0.9</td>
</tr>
<tr>
<td>Paresthesia</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremor</td>
<td>7*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blurred vision</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heaviness in legs</td>
<td>5</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>40</td>
<td>47</td>
<td>2.3</td>
<td>6.0*</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixturing difficulties</td>
<td>1</td>
<td>5</td>
<td>6**</td>
<td>0.4</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td>11*</td>
<td>3</td>
<td>8.8*</td>
<td>1.0</td>
</tr>
<tr>
<td>Ejaculation disorder</td>
<td></td>
<td></td>
<td>7.4*</td>
<td>0.0</td>
</tr>
<tr>
<td>Breathing difficulties/Pulmonary</td>
<td>8*</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Dermatological</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Menstrual difficulties</td>
<td>11*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced libido</td>
<td>11*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Statistically significant difference between treatment versus placebo-group, \(p < 0.05 \), 2-sided test

** Statistically significant difference between treatment versus placebo-group, \(p < 0.001 \), 2-sided test

RCT = Randomized Double Blinded Placebo-Controlled Trial
MPH ER = Methylphenidate extended release (MPH ER)
OROS MPH = Osmotic release oral system methylphenidate
ATX = Atomoxetine
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult ADHD Quality Of Life Scale (AAQoL)</td>
<td>Adult ADHD Quality Of Life Scale</td>
</tr>
<tr>
<td>Attention Deficit/Hyperactivity Disorder (ADHD)</td>
<td>Attention Deficit/Hyperactivity Disorder</td>
</tr>
<tr>
<td>Adverse Events (AE)</td>
<td>Adverse Events</td>
</tr>
<tr>
<td>The Adult ADHD Investigator Symptom Rating Scale (AISRS)</td>
<td>The Adult ADHD Investigator Symptom Rating Scale</td>
</tr>
<tr>
<td>The Adult ADHD Self-Report Scale; v1.1 = version 1.1 (ASRS)</td>
<td>The Adult ADHD Self-Report Scale; v1.1 = version 1.1</td>
</tr>
<tr>
<td>Atomoxetine (ATX)</td>
<td>Atomoxetine</td>
</tr>
<tr>
<td>Emotional Dysregulation Scale (EDS)</td>
<td>Emotional Dysregulation Scale</td>
</tr>
<tr>
<td>Emotional Lability Scale (ELS)</td>
<td>Emotional Lability Scale</td>
</tr>
<tr>
<td>Children’s Global assessment scale (C-GAS)</td>
<td>Children’s Global assessment scale</td>
</tr>
<tr>
<td>The Clinical Global Impression scale; I = investigator rated, CGI-ADHD-S = CGI scale of ADHD severity (CGI)</td>
<td>The Clinical Global Impression scale; I = investigator rated, CGI-ADHD-S = CGI scale of ADHD severity</td>
</tr>
<tr>
<td>Confidence Interval (CI)</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>Central Stimulants (CS)</td>
<td>Central Stimulants</td>
</tr>
<tr>
<td>Dextroamphetamine (DEX)</td>
<td>Dextroamphetamine</td>
</tr>
<tr>
<td>The Diagnostic and Statistical Manual of Mental Disorders-version IV, version III (DSM-IV, DSM-III)</td>
<td>The Diagnostic and Statistical Manual of Mental Disorders-version IV, version III</td>
</tr>
<tr>
<td>Drug Use Screening Inventory (DUSI)</td>
<td>Drug Use Screening Inventory</td>
</tr>
<tr>
<td>grade point average (GPA)</td>
<td>grade point average</td>
</tr>
<tr>
<td>10th revision (ICD-10)</td>
<td>10th revision</td>
</tr>
<tr>
<td>Montgomery-Aasberg Depression Rating Scale (MADRS)</td>
<td>Montgomery-Aasberg Depression Rating Scale</td>
</tr>
<tr>
<td>Mood Disorder Questionnaire (MDQ) (MDQ)</td>
<td>Mood Disorder Questionnaire (MDQ)</td>
</tr>
<tr>
<td>Placebo (PBO)</td>
<td>Placebo</td>
</tr>
<tr>
<td>Randomized Double Blinded Placebo-Controlled Trial (RCT)</td>
<td>Randomized Double Blinded Placebo-Controlled Trial</td>
</tr>
<tr>
<td>Structured Clinical Interview for DSM-IV (SCID)</td>
<td>Structured Clinical Interview for DSM-IV</td>
</tr>
<tr>
<td>The Symptom Checklist-90-Revised (SCL-90-R)</td>
<td>The Symptom Checklist-90-Revised</td>
</tr>
<tr>
<td>Strengths & Difficulties Questionnaires (SDQ)</td>
<td>Strengths & Difficulties Questionnaires</td>
</tr>
<tr>
<td>substance use disorder (SUD)</td>
<td>substance use disorder</td>
</tr>
<tr>
<td>Wechsler Individual Achievement Test-II (WIAT–II)</td>
<td>Wechsler Individual Achievement Test-II</td>
</tr>
<tr>
<td>The Wender-Reimherr Adult Attention Deficit Disorder Scale; EDS = Emotional Dysregulation Scale (WRAADDS)</td>
<td>The Wender-Reimherr Adult Attention Deficit Disorder Scale; EDS = Emotional Dysregulation Scale</td>
</tr>
<tr>
<td>Wender Utah Rating Scale (WURS)</td>
<td>Wender Utah Rating Scale</td>
</tr>
</tbody>
</table>
Literature search

We performed an internet search of the literature using the following electronic databases: National Library of Medicine Pubmed site (PubMed), EMBASE and PsycINFO until January 31st 2012. Published articles for last three decades were initially searched for making use of the key words: ADHD, adult and stimulants. The PubMed database got 1151 hits, EMBASE 627 hits and PsychINFO 157 hits. Then we expanded the search of PubMed and EMBASE making use of multiple combinations of the search terms; ADHD, Attention-Deficit Hyperactivity Disorder (20975 hits), and trial, clinical trial, and long-term, effectiveness, effect, efficacy, outcome, outcomes, occupational outcome, work status, functional, or functions (4580 hits), and medication, treatment, stimulants, psycho-stimulants, central-stimulants, methylphenidate, (dex)amphetamine, or atomoxetine (3127 hits) and adult and not child (901 hits) neither animal, nor meta-analysis or review articles (549 hits). Restricting our search to papers published in English on human subjects aged 18 years or older at the time of evaluation in adulthood (533 hits).
ADHD Attention Deficit and Hyperactivity Disorders

Childhood and persistent ADHD symptoms associated with educational failure and long-term occupational disability in adult ADHD

--Manuscript Draft--

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>ADHD-D-13-00026R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Childhood and persistent ADHD symptoms associated with educational failure and long-term occupational disability in adult ADHD</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Attention deficit; Adult ADHD; School dropout; comorbidity; Occupational disability</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Mats Fredriksen, M.D.
Vestfold Hospital Trust
Tønsberg, Vestfold NORWAY |
| Corresponding Author Secondary Information: | |
| Corresponding Author's Institution: | Vestfold Hospital Trust |
| Corresponding Author's Secondary Institution: | |
| First Author: | Mats Fredriksen, M.D. |
| First Author Secondary Information: | |
| Order of Authors: | Mats Fredriksen, M.D.
Alv A. Dahl, M.D., Ph.D.
Egil W. Martinsen, M.D., Ph.D.
Ole Klungsoyr, Ph.D.
Stephen V. Faraone, Ph.D.
Dawn E. Peleikis, M.D., Ph.D. |
| Order of Authors Secondary Information: | |
| Abstract: | Abstract
Few studies have examined the impact of childhood ADHD symptoms on adult ADHD functional outcomes. To address this issue dimensionally, ADHD symptoms in childhood and adulthood and their relation to educational deficits and work disability are studied in a clinical sample of adult patients with previously untreated ADHD.
Method: 250 adults diagnosed systematically with ADHD according to DSM-IV were prospectively recruited. Primary outcomes were high school dropout and being out-of-work-last-year. Childhood ADHD-symptoms, sex-differences, comorbidities of other mental disorders and adult ADHD symptoms were examined by historical data, clinician interviews and questionnaires.
Results: High levels of ADHD symptom severity in childhood were related to dropping out of high school (odds ratio = 3.0), as were higher numbers of hyperactive-impulsive symptoms in childhood. Significantly more women than men were long-term work-disabled (odds ratio = 2.0). After adjusting for age and gender, persisting high levels of ADHD inattention-symptoms in adulthood (odds ratio = 2.5), number of comorbid disorders, and particularly anxiety-disorders, were significantly related to long-term work disability.
Conclusion: Childhood hyperactive-impulsive symptoms and overall severity of childhood ADHD-symptoms were associated with high school drop-out rates, however persisting ADHD inattention symptoms and comorbid mental disorders in adulthood were more correlated to occupational impairment. These findings underline proposals for studies on early recognition and interventions for ADHD and psychiatric comorbidity. They further suggest that inattentive symptoms be a focus of adult ADHD treatment and that workplace interventions be considered to prevent long-term work disability. |
Corresponding Author: Dr. Mats Fredriksen, MD

Corresponding Author's Institution: Division of Mental Health & Addiction, Vestfold Hospital Trust, N-3101 Tonsberg, Norway

e-mail: mats.fredriksen@siv.no

Telephone number: +47 33 37 46 24

Fax number: +47 33 37 46 98

Acknowledgements The authors would like to thank all the patients at the Division of Mental Health and Addiction, Vestfold Hospital Trust who took part in the study. In particular, we would like to thank the psychiatrist who contributed to the data collection and diagnostics Christian Reissig. Special thanks to the psychiatric nurses and coworkers at the Division of Mental Health and Addiction, Vestfold Hospital Trust who contributed to the rapid inclusion and coordination of data collection Runar Eriksen, Tone I. Esaiassen, Tone E. B.Greidung, Åse M. T. Haug, Petter J. Hjelseth, Rita V. Loken, Heidi U. Lonn, Monica E. Luhr and Ingrid Nordsveen.

Conflict of interest The authors declare that they have no conflicts of interest in this study. Mats Fredriksen has been financially supported with a PhD-grant from the Norwegian ExtraFoundation for Health and Rehabilitation and the Norwegian Council for Mental Health. The funding sources have no role in the study or preparing the manuscript. In the past year, Dr. Faraone received consulting income and/or research support from Shire, Akili Interactive Labs, VAYA Pharma, SynapDx and Alcobra and research support from the National Institutes of Health (NIH). His institution is seeking a patent for the use of sodium-hydrogen exchange inhibitors in the treatment of ADHD. In previous years, he received consulting fees or was on Advisory Boards or participated in continuing medical education programs sponsored by: Shire, Alcobra, Otsuka, McNeil, Janssen, Novartis, Pfizer and Eli Lilly. Dr. Faraone receives royalties from books published by Guilford Press: Straight Talk about Your Child’s Mental Health and Oxford University Press: Schizophrenia: The Facts.
Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a childhood-onset neurodevelopmental condition characterized by age-inappropriate levels of inattention, hyperactivity and impulsivity (Kooij et al. 2010). Numerous follow-up studies have confirmed the persistence of ADHD symptoms into adulthood (Barkley et al. 2002; Biederman et al. 2012; Biederman et al. 2011; Fayyad et al. 2007; Kessler et al. 2005a; Kessler et al. 2006; Lara et al. 2009; Mannuzza et al. 2003; Kooij et al. 2005). Adolescents and young adults with childhood ADHD have significantly poorer academic achievement and work performance compared with those who did not have ADHD as children (Barkley et. al. 2006; Mannuzza et. al. 1993; Hechtman et. al. 1984). As adults they also have more comorbid mental disorders including drug and alcohol abuse (Hechtman and Weiss 1986; Biederman et al. 2006). Childhood onset, persistent adult ADHD thus seems to have serious long-term consequences (Able et al. 2007; Adler 2007; De Graaf et al. 2008; Kessler et al. 2005b). Poor academic achievement and long-term work disability may be considered particularly relevant for adult functioning due to their widespread social, financial and personal consequences (Biederman et al. 2008).

To date several studies of adult ADHD outcomes have reported on categorical ADHD subtype differences (McGough et al. 2005; Millstein et al. 1997; Murphy et al. 2002; Sprafkin et al. 2007). Sobanski et al. (2008) reported no significant differences between the subtypes concerning functional outcomes; all ADHD subgroups had significantly less education, were more frequently unemployed and had more lifetime psychiatric comorbidity compared with non-ADHD controls. Accordingly, Murphy et. al. (2002) reported that compared with community controls without ADHD, both the combined ADHD subtype and the inattentive subtype had significantly less education, lower proportion of graduation from college, and they were more likely to have received special education in school. On the other hand, Halmøy et al. (2009) found some differences between the subgroup categories. In their sample only 24% of adults with ADHD were gainfully employed, compared with 79% of population-based controls, and they reported comorbid substance abuse, depression, or anxiety disorders and belonging to the ADHD-combined subtype, were significantly associated with being out of work. In contrast, Gjervan et al (2011) found that higher current inattentiveness in adulthood was significantly related to fewer days at work in adults with ADHD.

However, categorical approaches to study subtype have been questioned. A considerable literature shows that DSM-IV childhood ADHD subtypes lack stability over time (Lahey et al. 2005; Nigg et al. 2010). Also, there is an age-dependent tendency for hyperactivity and impulsivity (H/I) symptoms to decline at a higher rate
than inattention (In) symptoms during childhood (Faraone et al. 2006a). Therefore, in the context of predicting adult outcomes, examining the number or accumulated load of In- and H/I- symptoms along with total symptom-severity in childhood may be more appropriate than subtype-categories (Lahey and Willcutt 2010).

Few studies of patients diagnosed with ADHD in adulthood also assessed ADHD symptoms in childhood. In a prospective, follow-up study of males diagnosed with ADHD in childhood, Mannuzza et al. (2011) reported that a high number of ADHD symptoms in adulthood were associated with increased impairment in adulthood. In a retrospective study, Kessler et al. (2010) found that In-symptoms were more frequently persistent into adulthood than H/I-symptoms; the strongest predictor of ADHD persistence into adulthood was childhood ADHD symptom severity.

Differences between the sexes regarding adult outcomes are of particular interest. Unlike studies of childhood ADHD, which report a greater preponderance of males, gender ratios tend to be equal in studies of adult ADHD (Barkley et al. 2010; Faraone et al. 2006b). Some studies find that more women than men are diagnosed with ADHD in adulthood (Groenewald et al. 2009), and that women are less frequently diagnosed with H/I-symptoms in childhood than males (Rucklidge 2010). Girls with ADHD are also reported to suffer from internalizing symptoms of anxiety and depression and comorbid mental disorders more frequently than boys (Staller and Faraone 2006), although it is questionable whether these differences are maintained in adulthood (Quinn 2008). In a study of adult ADHD, Grevet et al. (2006) found no significant sex differences as regards ADHD subtypes or psychiatric comorbidity. Another study of adult ADHD (Rasmussen and Levander 2009) reported that substance abuse and criminality were more prevalent among men, and affective, eating, and somatization disorders more common among women. However, ADHD symptom severity and subtype did not differ between the sexes. Unlike these results, women were more affected than men on different ADHD-scales in another retrospective study (Robison et al. 2008).

In summary, most studies of adult ADHD have studied ADHD symptoms in adulthood, and the reported relations between ADHD symptoms and functional outcomes such as education and work status have not been consistent. Few studies of adult ADHD have specifically examined childhood ADHD symptoms dimensionally, and their ability to predict educational attainment in adults with ADHD (Gau 2011), and there is a sparse and ambiguous literature about predictors of long term work disability. More research in the area could suggest how to prevent educational failure and occupational impairments and provide directions for further research. Therefore, the aims of our study were to examine whether the number of assessed childhood ADHD symptoms and ADHD symptom severity were associated with lower levels of education and long-term work disability in
clinically referred treatment naïve adults with ADHD. Further we sought to examine whether these associations were moderated by persisting ADHD symptoms in adulthood, gender and comorbidity.

Methods

Site and sampling

The present study is part of an ongoing prospective observational study of the medical treatment of adults with ADHD at the Outpatient Clinic at the Division of Mental Health and Addiction, Vestfold Hospital Trust, Norway, which is located in the South-Eastern part of Norway, and covers a region of about 250,000 adult inhabitants. Most individuals suspected of adult ADHD within that region are referred to the clinic. Referred patients aged 18 to 60 years were recruited consecutively. For inclusion, the subjects had to fulfill DSM-IV criteria for ADHD which involve determining the presence of ADHD symptoms during both childhood and adulthood.

The exclusion criteria were any clinically unstable mental disorder that needed immediate treatment, any medical contraindications for stimulant treatment such as hyperthyroidism, cardiovascular diseases or cardiac arrhythmias, patients having previously tried stimulant medication in adulthood or during the prior five years for patients 18 years of age. We also excluded patients with an Intelligence Quotient (IQ) under 70 based on the Wechsler Adult Intelligence Scale IV (Wechsler 2008).

During the ascertainment of participants 620 referred patients were assessed for eligibility (May 2009 to December 2010). The mean age of the females (n = 283) was 32.4 (SD = 10.9) years, and for males 31.5 (SD = 10.7) years. By evaluation for inclusion 262 patients (42%) were eligible. Twelve did not consent to take part, leaving a total of 250 stimulant naïve adult patients for the study.

Procedures
Psychiatric assessments

To obtain diagnoses, two board-certified psychiatrists examined each patient for inclusion criteria. The ADHD diagnosis was ascertained by a multistage and multisource procedure according to DSM-IV-TR criteria (American Psychiatric Association 2000; Barkley 2008; Faraone et al. 2006b; Haavik et al. 2010) with:

1) *The structured Diagnostic Interview for ADHD in adults, second edition (DIVA 2.0)* (Kooij and Francken 2010). To be diagnosed with ADHD, patients must have endorsed at least 6 out of 9 DSM-IV symptoms of inattention and/or hyperactivity/impulsivity in childhood, and currently have at least 6 out of 9 DSM-IV symptoms of inattention and/or hyperactivity/impulsivity for the last 6 months, and describe a chronic course from childhood to adulthood. We also included patients with 5 out of 9 symptom criteria for each symptom domain in adulthood if they had met full symptom criteria in childhood. Patients meeting the lower diagnostic threshold would be diagnosed as ADHD NOS in DSM-IV, but would be diagnosed with full threshold ADHD in DSM-5 according to the revised requirements for adult diagnosis (American Psychiatric Association 2013). We required that symptoms currently caused clinically significant impairment in social, academic, or occupational functioning.

2) To examine comorbid mental disorders and whether the ADHD symptoms might be better explained by another psychiatric disorder, *the MINI International Neuropsychiatric Interview Plus (M.I.N.I.-Plus)* was conducted by the clinicians. It is a structured diagnostic interview for DSM-IV Axis I disorders (Sheehan et al. 2002; Sheehan et al. 1998) for assessing comorbidity. 3) *Supplementary data* to support evidence of childhood symptoms were collected where available from other informant sources such as school records, educational psychology services in school and questionnaires rated by the parents (83% of the patients), blinded for other informants’ ratings. Collateral information about current symptoms and impairment were also obtained in the majority of cases from a close relative invited to participate during the DIVA interview with the patient.

During a pilot period 21 adult patients were independently examined by two psychiatrists. For the ADHD DSM-IV diagnosis, *Cohen’s kappa coefficient* was 0.77; *kappa* was 0.88 for ADHD hyperactive-impulsive criteria and 0.70 for inattention criteria. For the clinicians’ assessments of comorbid mental disorders into the applied diagnostic categories of the M.I.N.I.-Plus, measure of agreement showed a *kappa coefficient* of 0.79.
Definition and measures of outcome

Our two primary outcome measures were: 1) **Low level of education** defined as *not completed high school* by drop out from or interruption of the expected course of education before ending a secondary school program equivalent to high school including vocational school programs, and 2) **Long term work disability** defined as being out of work in the past year, by being fully out of paid work, ordinary school or studies due to disability for the last 12 months before enrollment in the study. Data on education were supplemented with historical data collected from school grades, and these measures were ascertained by face-to-face interview with the patients.

Because DSM-IV ‘subtypes’ of ADHD have been criticized (Nigg et al. 2010; Willcutt et al. 2012), and the DSM-5 renames ‘subtypes’ as ‘presentations’, we decided to investigate the predictive ability of ADHD symptom dimensions rather than subtypes. Assessments by the DIVA 2.0 allowed for clinician evaluation of symptom criteria of childhood and adulthood separately. Other factors studied in relation to the two main outcome variables were risk to get into fights, antisocial traits, learning difficulties, ratings of child and adult ADHD symptoms, and clinicians’ investigation of current comorbidity.

The Wender Utah Rating Scale (WURS)

To identify the severity of retrospective childhood ADHD symptoms, patients rated the Norwegian short version of the WURS-25 (Ward et al. 1993; Wierzbicki 2005), a retrospective dimensional measure of ADHD symptoms which has good psychometric properties (Caci et al. 2010; Fossati et al. 2001; McCann et al. 2000; Retz-Junginger et al. 2003). The WURS-25 items are rated on a 5-point severity scale (score range from 0-100). We categorized the scaled ‘WURS-25’ (median = 56, mean = 56, SD = 16.9) into the ‘WURS-25 category’ by quartiles (score < 40 or ‘low’, score 40 – 70 as ‘moderate’ and score ≥ 70 as ‘high’). The WURS subscales for medical problems and school problems were also examined.

Adult ADHD Self-Report Scale version 1.1 (ASRSv.1.1)

Current adult ADHD symptoms present for last six months were dimensionally rated by the Norwegian version of the 18 item ASRSv.1.1 (Kessler et al. 2005c) The ASRS covers the nine inattentive criteria and nine hyperactive-impulsive criteria according to DSM-IV (Adler et al. 2006; Kessler et al. 2007; Murphy and Adler
2004). We used the continuous scoring method (Kessler et al. 2005c). Symptoms are self-rated on a 5-point scale of frequency with a score range of 0-72 points for total symptom load. The inattentive and hyperactive-impulsive subscales each have a range of 0-36 points. The 18 item ASRS in our sample showed a Cronbach’s alpha coefficient of 0.86; the inattention and hyperactivity-impulsivity subscales had alpha values of 0.73 and 0.80, respectively.

Additional information

Historical data about pedagogical assistance in primary school, reading or arithmetic problems, grades from school reports, relevant information from other sources on childhood symptoms such as school records and psychological-pedagogic services records, were also collected systematically. Physical examination was performed by the patients’ regular physician within the past three months to exclude somatic diseases and data from medical records of previous medication were collected.

To evaluate intellectual ability all patients with school grades below average were screened by the Hayes Ability Screening Index (HASI) (Hayes 2000; Sondenaa et al. 2011). Exclusions of those with an Intelligence Quotient (IQ) under 70 were based on the Wechsler Adult Intelligence Scale IV (Wechsler 2008), which was performed when for HASI score less than or equal to 85.

Ethics

The study was approved by The National Committee for Research Ethics of the Health Region South-East and The Norwegian Social Science Data Services and have therefore been performed in accordance with the ethical standards in the 1964 Declaration of Helsinki and later amendments. After a complete description of the study was provided to the subjects, all participants gave written informed consent prior to their inclusion in the study.

Statistical methods

All statistical analyses were carried out by The PASW statistics (version 17) for Windows package. Data from the clinician administered MINI on comorbid mental disorders are aggregated within each diagnostic category.
presented such as any panic disorder or obsessive compulsive disorder are represented as any anxiety disorder. The data were initially analyzed by descriptive methods. On the group level, categorical variables were analyzed using the chi-square test, and stratified in order to explore sex effects (Grevet et al. 2006). Testing differences in the continuous outcomes was done with t-tests when the assumption of normal distribution was met, and otherwise with non-parametric tests. The level of significance in the univariate analyses was a priori set at \(p < 0.01 \) due to numbers of tests planned. All tests were two sided. The continuous scores of the WURS-25 and ASRS inattention subscale were categorized into low, moderate and high level by the quartiles to get a more clinically relevant representation.

Analyses of the dependent categorical factor ‘not completed high school’ were adjusted for gender, but not the ‘age’-factor because predictors should antecede the predicted factor. The work status category analyses was conducted adjusted for both age and gender. The specified independent variables found to have significant associations to the dependent variable were entered into in logistic regression models initially unadjusted one at a time, and were finally adjusted by entering age and gender together. Corresponding odds ratios (ORs) and their 95% confidence interval (95% CI) were estimated as measure of strength of associations, and the level of two-tailed significance was set at \(p < 0.05 \).

Results

Sociodemographics and clinical characteristics by gender

A total of 250 patients participated. Their mean age was 32.6 \((SD = 9.8)\) years, 52% were females. Only five patients (2%) had received an ADHD-diagnosis before 18 years of age. None had previously received any targeted ADHD treatment or stimulant medication. Table 1 presents socio-demographic and clinical characteristics for all patients and stratified by gender. The females had a significant higher age at referral to the clinic than the males.

Insert Table 1 about here
Sex differences in childhood characteristics (Table 1)

Many patients reported problems with getting involved in fights with peers in childhood (43%) indicating impulsive behavior, a tendency that was significantly more common in males than females (Table 1). A substantial proportion (38%) of all patients had reading or arithmetic skill problems in primary school. These problems were evenly distributed between the sexes, but significantly more males had received assessments by educational psychology services during primary school (39% versus 20%, \(p < 0.01 \)). Regarding severity of childhood symptoms by the WURS, males reported less medical problems in childhood (\(p < 0.01 \)), and more school-related problems (\(p < 0.01 \)) compared to females, but no significant differences in overall childhood ADHD symptom scores were observed between the sexes. Likewise, we did not found any significant sex differences in the number of DIVA assessed childhood ADHD symptoms.

Sex differences in comorbidity, adult symptoms, education and work status

A large proportion of the total sample had at least one comorbid mental disorder (75%), and 55% had two or more such disorders (not shown in the table). Except for more males having antisocial behavior, we found no significant differences between the sexes (Table 1). A significant proportion of the patients in our sample used or had used a medicine for anxiety or depression in the past year (71%). There was a tendency for more women than men to use such medications (77% versus 65%, \(p < 0.05 \)) which consisted mainly of antidepressants (> 90%), to a lesser degree anxiolytics and sedatives. Such medication was related to higher number of comorbid disorders (\(p < 0.01 \)) (not shown in the tables).

The number of clinician assessed ADHD symptoms in adulthood by the DIVA was significantly higher for females (\(p < 0.01 \)), particularly for inattentive symptoms (\(p < 0.01 \)). Self-reported current ADHD symptoms differed correspondingly with a significant tendency for more frequent symptoms reported by females than males on the ASRS full scale (\(p < 0.01 \)) and the inattentive subscale (\(p < 0.01 \)).

A considerable proportion of the sample (56%) had not completed a secondary school program equivalent to high school; no significant difference between the sexes was observed. However, more males (53%) than females (36%) were in paid work or ordinary studies at enrollment in the study (\(p < 0.01 \)) and more females (58%) were reported with disability or rehabilitation pension than males (41%) (\(p < 0.01 \)) (Table 1).
This sex difference was also reflected in the long term outcome of being disabled for work in the past year (60% of women versus 42% of men, \(p < 0.01 \)).

Insert Table 2 about here

Factors associated with high school non-completion (Table 3)

Mean age at inclusion into the study was higher among those who had completed high school (35.1, \(SD = 9.7 \) years versus 30.2, \(SD = 9.4 \) years, \(p < 0.01 \)) (Table 2). Those who did not complete high school more often reported *risk to get into fights with peers*, and a larger proportion had received assessment by educational psychology services during primary school. The non-completers had significantly higher scores on overall child ADHD symptom severity (WURS-25, \(p < 0.01 \)) and had been assessed by the clinicians as having significantly more DSM-IV ADHD symptoms and H/I-symptoms in childhood (DIVA) (\(p = 0.01 \)). No significant differences were found for comorbid mental disorders or ADHD symptoms in adulthood (ASRS) between the two education categories.

Insert Table 3 about here

Previous assessment by *educational psychology services* during (primary) school and *risk to get into fights* with peers during childhood were significantly associated with *likelihood of not completed high school* when entered one at a time in the regression analyses. After adjusting for sex, these associations remained significant (\(p < 0.05 \)).

The WURS-25 category of ADHD symptom severity ‘high’ (score \(\geq 70 \)) predicted non-completion of high school with OR = 3.0. This indicates a three-fold increased risk of not attaining upper secondary education. Higher numbers of child ADHD H/I-symptoms also remained significantly related to non-completion of high school after adjustment for sex (\(p < 0.01 \)). To control for confounding of disruptive behavior, the number of H/I-symptoms in childhood was entered into the regression-model adjusted for *risk to get into fights* with peers (M.I.N.I.-Plus). With this adjustment, the association to non-completion then became statistically non-significant. However, alternatively adjusting for occurrence of *antisocial-/conduct disorder symptoms* (M.I.N.I.-
Plus), the number of H/I-childhood symptoms maintained statistically significant ($p < 0.01$) as a predictor of high school drop-out (not shown in the tables).

Factors associated with work status

The majority of the sample was not in paid work or study (56%) at the time of referral, and 51% had not been in paid work or study in the past year due to disability. Half of the sample also received a disability or rehabilitation pension, reflecting long-term work disability (Table 1). A significantly larger proportion of females (60%) than males (42%) had not been in paid work or study last year (Table 1). The mean age at referral of those out of work or study was significantly higher than among those working (Table 2). Overall childhood severity scores by the WURS-25 showed no difference between employed and work disabled patients.

Those who were out of work last year had significantly more comorbid disorders ($p < 0.01$), particularly anxiety disorders in both sexes, and antisocial or conduct disorder among females (8% versus 0%, $p < 0.01$; data not in the tables). A significant proportion of the patients in the group of long-term work disability used or had used a medicine for anxiety or depression in the past year (82%, $p < 0.01$). Those out of work or study last year also had significantly higher ASRS inattention scores compared with those in work or study ($p < 0.01$). The patients who were not working also showed a tendency toward having more inattentive symptoms in adulthood ($p = .04$) assessed by DIVA (Table 2).

Predicting long term work disability

Higher age at entering the study was significantly related to higher likelihood of being out of work last year, and females were more at risk with age adjusted OR $= 1.8$ in the logistic regression analyses. When adjusting for age and sex, higher numbers of persistent ADHD In- symptoms in adulthood assessed by the DIVA with OR $= 1.2$ (Table 3), and level of persistent ADHD inattentive symptoms in adulthood measured by the ASRS inattention score with adjusted OR $= 1.1$ (not shown in the tables), and of the ASRS inattention high score category with adjusted OR $= 2.5$, by categories of the quartiles score; low < 24, high ≥ 31) were related to increased likelihood of being out of work last year (Table 3). Also, higher number of comorbid mental disorders (MINI) remained significantly related to not being in work last year with adjusted OR $= 1.6$ (Table 3). A significant inter-
correlation between number of comorbid disorders and ADHD symptoms (ASRS total score) and inattention symptoms (ASRS inattention score) was found (Spearman’s rho = 0.22, \(p < 0.01 \) and rho = 0.19, \(p < 0.01 \) respectively). The statistically significant associations found between the ASRS inattention high score category and the dependent variable of work disability (Table 3) disappeared when combined with number of comorbid disorders in the regression model (data not shown).

Discussion

Main findings

This study examined adult ADHD outcomes of school failure and long term work disability in dimensional relation to previous and persistent ADHD symptoms and comorbidity for both genders. Patients who had more hyperactive and impulsive symptoms and total ADHD symptoms in childhood had a significantly shorter duration of education and an increased risk of drop-out from high school. No significant sex differences were observed concerning these educational outcomes. Work status was weakly related to differences in ADHD characteristics in childhood. In contrast, persistent inattentive ADHD-symptoms in adulthood, as well as the number of comorbid mental disorders in adulthood, were significantly related to an increased risk of long-term work disability. Significantly more women than men were long-term work-disabled.

Childhood hyperactivity-impulsivity predicted high school drop-out

Longitudinal studies of children with follow up in youth and young adulthood have found adverse educational outcomes associated with the severity of childhood ADHD symptoms (Barbaresi et al. 2007; Barkley et al. 1990). Youths with high levels of hyperactive-impulsive symptoms may be more likely to experience negative feedback in school or to make impulsive decisions about discontinuation, than those with fewer symptoms in this domain. However, in contrast to our study, which found that hyperactive-impulsive symptoms, but not conduct disorder, predicted high school dropout, prior studies, found that conduct disorder was the best predictor of high school dropout (Barkley et al. 1990; Breslau et al. 2011). A longitudinal study did not find such an association (Trampush et al. 2009), but lower IQ, reading ability, socioeconomic status, frequent marijuana use, and limited paternal contact significantly differentiated school-dropouts from graduates. Our finding of hyperactivity-
impulsivity in childhood as a predictor of school-failure was modified if adjusted for risk to get into fights with peers; and this association became statistically non-significant. However when we adjusted for occurrence of antisocial-conduct behavior (M.I.N.I.-Plus), the hyperactive-impulsive childhood symptoms remained a statistically significant predictor of high school drop-out (not shown in the tables), indicating this association was partially independent of antisocial behaviors.

Persistent inattentive symptoms related to work disability

While number and severity of ADHD symptoms in childhood were related to lower educational outcomes, these factors seemed not to influence on the outcome of being out of work last year. This is in accordance with a report of weak correlations between specific ADHD symptoms and adult impairment (Gordon et al. 2006). However, others found a statistically significant relationship between childhood ADHD symptoms and impairment in adulthood when impairment in broader functional domains was evaluated (Barkley et al. 2006; Kessler et al. 2010; Mannuzza et al. 2011).

We found adult inattentive symptoms to be significantly related to being out of work last year. Several studies have reported decreases in hyperactive/impulsive symptoms by age, and persistence of inattentive symptoms into adulthood (Faraone et al. 2006a). Gjervan et al. (2011) also found that current inattentiveness in adults was significantly related to fewer days in ordinary work during the last year. Also according to other authors, the hyperactive/impulsive subtype is less common in adult ADHD (Sobanski et al. 2008), and the inattentive symptom cluster has been reported to be more disabling in ADHD adults (Stavro et al. 2007).

Educational and vocational deficits and sex-differences

Almost twice as many (56%) as in the general Norwegian population (33%) of patients in our total sample had not completed high school (Falch et al. 2010) and more than half of the patients had not attained a suitable education for the labor market. However, we did not find any significant association between educational failure and long term work disability. This may be explained partially by existing needs for unskilled workers and employment measures for unskilled or uneducated workers.

The majority of participants were not employed at the time of referral, and half of them had not been in ordinary work or study during the past year due to disability. These disability rates are very high when compared
with the known non-working rate of 18% for the Norwegian population (Statistics Norway, 2012). We found higher non-working rates in our sample than reported in other studies of adults with ADHD (Able et al., 2007; Sobanski et al., 2007), although similar proportions were reported in studies by Halmoy et. al. (2009) and Gjervan et. al. (2011).

Almost twice as many women than men reported long-term unemployment or being fully out of work last year due to disability; this gender difference remained statistically significant when adjusted for age and comorbidity (Table 3). This finding could not entirely be explained by a general trend in the Norwegian population of more women than men working part-time, nor by mental disorders being more common among women (Statistics Norway, 2012) since we compared only those fully out of work, and adjusted for psychiatric comorbidity. This significant sex-difference thus could indicate women to be more susceptible than men in a vocational context to the disabling consequences of ADHD, or that women are more prone to get work environments particularly less compatible with ADHD. This raises unresolved questions about unfavorable environmental work place factors, and proposals for counselling or facilitation.

Comorbidity and functional outcomes

Adult comorbidity was significantly related to long-term work disability in our sample, and for both sexes. A large proportion of our sample had psychiatric comorbidity (75%) in accordance with reported prevalences from prior studies of adult ADHD. The total number of comorbid disorders did not differ significantly between the sexes or between those who did and did not complete high-school. Of adult factors with significant relation to long term work outcome, number of comorbid disorders correlated marginally with selected childhood factors, and thus may reflect an independent factor of child ADHD symptoms.

Some studies have shown worse outcome in childhood ADHD with co-occurring psychopathology (Pliszka 1998; Wilens et al. 2002), and similar results have been found for adults with ADHD (McGough et al. 2005; Mick et al. 2008; Weiss et al. 2010). There is a significant literature showing that psychiatric morbidity and anxiety disorders in adults are associated with long term work disability (Lorant et al. 2003; Sareen et al. 2006; Virtanen et al. 2011). A significant proportion of the patients in our sample used or had used a medicine for anxiety or depression last year, and such medication use was associated with long-term work disability. This was expected since those on any medication had a higher number of comorbid disorders. Lack of medical
treatment of comorbidity therefore was unlikely a significantly confounding factor for these worse outcomes, but the issue of ineffective treatment is still not accounted for.

Strengths and limitations

Our study has several strengths. A novel contribution of the study is the dimensional examination of whether level of disability in adulthood is related to number of childhood criteria met. The sample comprised treatment naïve, adult ADHD patients and represented a wide age-span, both genders and comorbid conditions. We had historical data from school and consultations with former educational psychology services and health care services data. Collateral independent information was collected for the majority of the patients to ascertain childhood data. All patients in the present study were examined with structured diagnostic interviews by trained clinicians and evaluations were not based on self-reported questionnaires or retrospective data only.

A large proportion of the patients were previously undiagnosed concerning ADHD, though many had been recognized with learning difficulties or behavioral problems in childhood. Gjervan et. al. (2012) from Norway reported a higher proportion diagnosed by the age of 18 in their sample (23/149), but Bejerot (2010) from Sweden reported fewer (1/214) with prior diagnosis, as they recruited patients for treatment of first time referred adults with ADHD. Some selection bias that may have contributed to our study is the inclusion criteria of being previously unmedicated, and the fact that more than half of the patients were aged 30 years or older.

However, our findings have to be viewed within the limitations of the design and methods applied. It is a cross-sectional study based on data from a clinical sample. Our findings of statistically significant associations do not imply causal relationships. Furthermore, investigators were not blind to the participants’ diagnostic status, which could have influenced their assessments. However, the data from parents and patients were collected independently; parents did not know the ratings of the patients and vice-versa. Still, retrospective data are possibly distorted by current symptoms which may bias estimates of association.

The clinical variables are not presented together in the regression model due to significant inter-correlation. Effects of multi-collinearity were expected to occur in the multivariate analysis, and thus comorbidity as a confounder could not be fully accounted for.

Conclusions and implications
Severity of ADHD symptoms and a high load of child hyperactive-impulsive symptoms in childhood were associated with drop-out from school and fewer years of attained education, indicating an increased risk for unfavorable educational outcomes related to these symptoms in childhood and adolescence. Persistence of more inattentive symptoms in adulthood was associated with greater occupational impairment and additional adult comorbidity was a major predictor of long term work disability.

Our findings emphasize the serious consequences of ADHD in childhood and adulthood in terms of functional outcomes, and may suggest that early recognition and intervention for ADHD and comorbid mental disorders are of importance to improve the long-term outcome for ADHD patients. Our work further emphasizes the importance of addressing inattentive symptoms in the treatment of adult ADHD and calls for adequate workplace measures to prevent long-term work disability.
Table 1 Sociodemographic and clinical characteristics by sexes

<table>
<thead>
<tr>
<th></th>
<th>Total sample</th>
<th>Females</th>
<th>Males</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Mean (SD)b</td>
<td>32.6 (9.8)</td>
<td>34.1 (9.8)</td>
<td>30.7 (9.5)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>School variables, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not completed high school</td>
<td>140 (56)</td>
<td>67 (52)</td>
<td>73 (60)</td>
<td>0.18</td>
</tr>
<tr>
<td>Number of years with education, Mean (SD)</td>
<td>11.0 (2.3)</td>
<td>11.3 (2.4)</td>
<td>10.8 (2.1)</td>
<td>0.12</td>
</tr>
<tr>
<td>Behavioral risk to get into fights a</td>
<td>108 (43)</td>
<td>47 (41)</td>
<td>61 (56)</td>
<td>0.03</td>
</tr>
<tr>
<td>Educational psychology services</td>
<td>73 (29)</td>
<td>26 (20)</td>
<td>47 (39)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Lexical or arithmetical skill problems</td>
<td>95 (38)</td>
<td>46 (36)</td>
<td>49 (41)</td>
<td>0.43</td>
</tr>
<tr>
<td>Childhood symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wender Utah Rating Scale b, Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WURS Medical problems</td>
<td>5.0 (4.4)</td>
<td>5.8 (4.5)</td>
<td>4.0 (4.1)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>WURS School-related problems</td>
<td>17.9 (7.6)</td>
<td>16.0 (7.2)</td>
<td>19.8 (7.5)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>WURS-25</td>
<td>56.2 (16.8)</td>
<td>55.9 (17.7)</td>
<td>56.2 (16.1)</td>
<td>0.90</td>
</tr>
<tr>
<td>WURS-25 category, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (< 40)</td>
<td>40 (16)</td>
<td>26 (20)</td>
<td>14 (12)</td>
<td>0.05</td>
</tr>
<tr>
<td>Moderate (40-70)</td>
<td>152 (61)</td>
<td>70 (54)</td>
<td>82 (69)</td>
<td>-</td>
</tr>
<tr>
<td>High (≥ 70)</td>
<td>56 (23)</td>
<td>33 (26)</td>
<td>23 (19)</td>
<td>-</td>
</tr>
<tr>
<td>Number of ADHD symptoms in childhood (by DIVA), Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of symptoms</td>
<td>11.8 (3.1)</td>
<td>11.5 (3.2)</td>
<td>12.2 (2.9)</td>
<td>0.07</td>
</tr>
<tr>
<td>Inattention symptoms</td>
<td>6.6 (1.5)</td>
<td>6.5 (1.4)</td>
<td>6.7 (1.6)</td>
<td>0.25</td>
</tr>
<tr>
<td>Hyperactivity-impulsivity symptoms</td>
<td>5.2 (2.4)</td>
<td>5.0 (2.5)</td>
<td>5.5 (2.3)</td>
<td>0.11</td>
</tr>
<tr>
<td>Adult factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational status at inclusion, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In paid work or study</td>
<td>111 (44)</td>
<td>47 (36)</td>
<td>64 (53)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Disability or rehabilitation pension</td>
<td>124 (50)</td>
<td>75 (58)</td>
<td>49 (41)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Unemployed</td>
<td>15 (6)</td>
<td>7 (5)</td>
<td>8 (6)</td>
<td>0.69</td>
</tr>
<tr>
<td>Work disabled last year</td>
<td>128 (51)</td>
<td>77 (60)</td>
<td>51 (42)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Comorbid mental disorder a, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any comorbid mental disorder</td>
<td>188 (75)</td>
<td>96 (74)</td>
<td>92 (76)</td>
<td>0.77</td>
</tr>
<tr>
<td>Major depressive episode</td>
<td>59 (24)</td>
<td>32 (25)</td>
<td>27 (22)</td>
<td>0.64</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>39 (16)</td>
<td>20 (16)</td>
<td>19 (16)</td>
<td>0.97</td>
</tr>
<tr>
<td>Anxiety disorder (last year)</td>
<td>136 (54)</td>
<td>77 (60)</td>
<td>59 (49)</td>
<td>0.08</td>
</tr>
<tr>
<td>Alcohol use disorder (last year)</td>
<td>38 (15)</td>
<td>16 (12)</td>
<td>22 (18)</td>
<td>0.20</td>
</tr>
<tr>
<td>Drug use disorder (last year)</td>
<td>36 (14)</td>
<td>13 (10)</td>
<td>23 (19)</td>
<td>0.04</td>
</tr>
<tr>
<td>Antisocial behavior</td>
<td>42 (17)</td>
<td>10 (8)</td>
<td>32 (27)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Number of comorbid disorders b, Mean (SD)</td>
<td>1.5 (1.2)</td>
<td>1.5 (1.2)</td>
<td>1.5 (1.2)</td>
<td>0.78</td>
</tr>
<tr>
<td>Number of ADHD symptoms in adulthood (by DIVA), Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of symptoms (0–18)</td>
<td>12.0 (3.2)</td>
<td>12.5 (3.0)</td>
<td>11.5 (3.3)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Inattention symptoms (0–9)</td>
<td>6.8 (1.7)</td>
<td>7.1 (1.3)</td>
<td>6.5 (2.0)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Hyperactivity-impulsivity symptoms (0–9)</td>
<td>5.2 (2.3)</td>
<td>5.4 (2.3)</td>
<td>5.0 (2.3)</td>
<td>0.16</td>
</tr>
<tr>
<td>Adult ADHD Self-Report Scale (ASRSv1.1), Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASRS full scale (0–72)</td>
<td>50.5 (10.2)</td>
<td>51.9 (9.3)</td>
<td>48.8 (10.9)</td>
<td>0.01</td>
</tr>
<tr>
<td>Inattention subscale (0–36)</td>
<td>26.9 (5.3)</td>
<td>27.7 (4.6)</td>
<td>26.0 (5.6)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Hyperactivity-impulsivity subscale (0–36)</td>
<td>23.6 (6.6)</td>
<td>24.2 (6.3)</td>
<td>22.8 (7.0)</td>
<td>0.09</td>
</tr>
<tr>
<td>Psychopharmacological medication last year (missing = 7), n(%)</td>
<td>173 (71)</td>
<td>96 (77)</td>
<td>77 (65)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

a. By the Mini International Neuropsychiatric Interview (M.I.N.I.), lifetime if not specified.
b. Severity of childhood symptoms rated by the Wender Utah Rating Scale, WURS-25 category by the quartiles: WURS-25 score < 40 → 0 (ref).
c. The structured Diagnostic Interview for ADHD in adults, second edition (DIVA 2.0); number of symptom criteria met in childhood and adulthood assessed separately by the clinicians.
Table 2 Characteristics and symptoms by high school drop-out and long term work disability *

<table>
<thead>
<tr>
<th></th>
<th>High school drop-out (n = 140)</th>
<th>Completed high school (n = 110)</th>
<th>p(^a)</th>
<th>Work disabled (n = 128)</th>
<th>Employable last year (n = 122)</th>
<th>p(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Mean (SD)(^b)</td>
<td>30.2 (9.4)</td>
<td>35.1 (9.7)</td>
<td>< 0.01</td>
<td>34.3 (9.8)</td>
<td>30.6 (9.5)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk to get into fights(^c)</td>
<td>68 (56)</td>
<td>40 (39)</td>
<td>0.01</td>
<td>58 (50)</td>
<td>50 (45)</td>
<td>0.42</td>
</tr>
<tr>
<td>Educational psychology services</td>
<td>50 (36)</td>
<td>23 (21)</td>
<td>0.01</td>
<td>34 (27)</td>
<td>32 (27)</td>
<td>0.98</td>
</tr>
<tr>
<td>Lexical or arithmetical skill problems</td>
<td>55 (40)</td>
<td>40 (37)</td>
<td>0.64</td>
<td>53 (41)</td>
<td>42 (35)</td>
<td>0.30</td>
</tr>
<tr>
<td>Not completed high school</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Number of years with education, Mean (SD)(^b)</td>
<td>9.4 (0.7)</td>
<td>13.1 (2.0)</td>
<td>< 0.01</td>
<td>10.8 (2.0)</td>
<td>11.3 (2.6)</td>
<td>0.08</td>
</tr>
<tr>
<td>The Wender Utah Rating Scale(^c), Mean (SD)(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WURS Medical problems</td>
<td>5.0 (4.7)</td>
<td>5.0 (4.1)</td>
<td>0.96</td>
<td>5.5 (4.8)</td>
<td>4.4 (3.9)</td>
<td>0.04</td>
</tr>
<tr>
<td>WURS School-related problems</td>
<td>18.6 (7.5)</td>
<td>16.8 (7.7)</td>
<td>0.07</td>
<td>17.8 (7.6)</td>
<td>17.8 (7.6)</td>
<td>0.95</td>
</tr>
<tr>
<td>WURS-25</td>
<td>58.7 (18.0)</td>
<td>52.7 (14.9)</td>
<td>< 0.01</td>
<td>57.0 (16.4)</td>
<td>55.0 (17.5)</td>
<td>0.34</td>
</tr>
<tr>
<td>WURS-25 category(^a), n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low (< 40)</td>
<td>20 (15)</td>
<td>20 (18)</td>
<td>< 0.01</td>
<td>17 (13)</td>
<td>23 (19)</td>
<td>0.48</td>
</tr>
<tr>
<td>Moderate (40 - 70)</td>
<td>76 (55)</td>
<td>76 (69)</td>
<td>-</td>
<td>80 (63)</td>
<td>72 (60)</td>
<td>-</td>
</tr>
<tr>
<td>High (≥ 70)</td>
<td>42 (30)</td>
<td>14 (13)</td>
<td>-</td>
<td>30 (24)</td>
<td>26 (22)</td>
<td>-</td>
</tr>
<tr>
<td>Number of ADHD symptoms in childhood(^d), Mean (SD)(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>12.4 (2.9)</td>
<td>11.1 (3.2)</td>
<td>< 0.01</td>
<td>11.5 (3.2)</td>
<td>12.1 (3.0)</td>
<td>0.11</td>
</tr>
<tr>
<td>Inattention</td>
<td>6.8 (1.4)</td>
<td>6.4 (1.6)</td>
<td>0.04</td>
<td>6.5 (1.5)</td>
<td>6.6 (1.5)</td>
<td>0.54</td>
</tr>
<tr>
<td>Hyperactivity-impulsivity</td>
<td>5.6 (2.3)</td>
<td>4.7 (2.5)</td>
<td>< 0.01</td>
<td>5.0 (2.6)</td>
<td>5.5 (2.1)</td>
<td>0.09</td>
</tr>
<tr>
<td>Comorbid disorders(^c), n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressive disorder</td>
<td>13 (9)</td>
<td>18 (16)</td>
<td>0.09</td>
<td>15 (23)</td>
<td>16 (10)</td>
<td>0.72</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>21 (15)</td>
<td>18 (16)</td>
<td>0.77</td>
<td>25 (20)</td>
<td>14 (12)</td>
<td>0.08</td>
</tr>
<tr>
<td>Anxiety disorder (last year)</td>
<td>79 (56)</td>
<td>57 (52)</td>
<td>0.47</td>
<td>82 (64)</td>
<td>54 (44)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Alcohol use disorder (last year)</td>
<td>26 (19)</td>
<td>12 (11)</td>
<td>0.09</td>
<td>20 (16)</td>
<td>18 (15)</td>
<td>0.85</td>
</tr>
<tr>
<td>Drug use disorder (last year)</td>
<td>23 (16)</td>
<td>13 (12)</td>
<td>0.30</td>
<td>20 (16)</td>
<td>16 (13)</td>
<td>0.57</td>
</tr>
<tr>
<td>Antisocial or conduct behaviour</td>
<td>25 (18)</td>
<td>17 (16)</td>
<td>0.60</td>
<td>23 (18)</td>
<td>19 (16)</td>
<td>0.59</td>
</tr>
<tr>
<td>Number of comorbid disorders(^d), Mean (SD)(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of symptoms (0–18)</td>
<td>12.2 (3.2)</td>
<td>11.8 (3.1)</td>
<td>0.28</td>
<td>12.2 (3.1)</td>
<td>11.8 (3.4)</td>
<td>0.35</td>
</tr>
<tr>
<td>Inattention (0–9)</td>
<td>7.0 (1.8)</td>
<td>6.6 (1.6)</td>
<td>0.07</td>
<td>7.0 (1.4)</td>
<td>6.6 (1.9)</td>
<td>0.04</td>
</tr>
<tr>
<td>Hyperactivity-impulsivity (0–9)</td>
<td>5.3 (2.3)</td>
<td>5.2 (2.2)</td>
<td>0.84</td>
<td>5.2 (2.3)</td>
<td>5.3 (2.2)</td>
<td>0.84</td>
</tr>
<tr>
<td>Adult ADHD Self-Report Scale, Mean (SD)(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASRS full scale (0–72)</td>
<td>51.0 (10.7)</td>
<td>49.7 (9.4)</td>
<td>0.31</td>
<td>51.2 (10.2)</td>
<td>49.6 (10.1)</td>
<td>0.21</td>
</tr>
<tr>
<td>Inattention subscale (0–36)</td>
<td>27.3 (5.5)</td>
<td>26.4 (4.9)</td>
<td>0.14</td>
<td>27.4 (4.8)</td>
<td>26.0 (5.6)</td>
<td>0.01</td>
</tr>
<tr>
<td>Hyperactivity-impulsivity subscale (0–36)</td>
<td>23.6 (6.8)</td>
<td>23.3 (6.6)</td>
<td>0.70</td>
<td>23.4 (7.0)</td>
<td>23.5 (6.4)</td>
<td>0.90</td>
</tr>
<tr>
<td>Psychopharmaca last year, n (%)</td>
<td>91 (68)</td>
<td>82 (75)</td>
<td>0.21</td>
<td>103 (82)</td>
<td>70 (60)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

*Patients classified by completed high school or not (lower education) and being out of work or study last year by disability.

a. From Pearson chi-square, 2-sided test if not otherwise specified. b. t test, independent groups, 2-sided if not otherwise specified.

c. Severity of childhood symptoms rated by the Wender Utah Rating Scale WURS-25 category by the quartiles: WURS-25 score < 40 → 0 (low = ref.).

d. The structured Diagnostic Interview for ADHD in adults, second edition (DIVA 2.0), number of symptom criteria met in childhood and adulthood assessed separately.

e. The Mini International Neurropsychiatric Interview (M.I.N.I.) plus version for DSM-IV, lifetime if not otherwise specified.

[Click here to download Table: Table 2rev(2).doc]
Table 3 Prediction of adult functional outcome unadjusted and adjusted for age and sex by logistic regression analyses

<table>
<thead>
<tr>
<th></th>
<th>Low education (N = 250)</th>
<th>Work disability</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Likelihood of 'not completed high school'</td>
<td>Likelihood of 'being out of work last year'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unadjusted OR (CI)</td>
<td>Adjusted OR (CI)</td>
<td>Unadjusted OR (CI)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>not in equation</td>
<td>not in equation</td>
<td>1.04 (1.01 - 1.07)**</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.0 (0.43 - 1.17)</td>
<td>0.7 (0.43 - 1.17)</td>
<td>0.7 (0.43 – 1.17)</td>
</tr>
<tr>
<td>Female</td>
<td>0.7 (0.43 – 1.17)</td>
<td>2.0 (1.23 - 3.36)**</td>
<td>1.8 (1.10 - 3.08)*</td>
</tr>
<tr>
<td>Childhood factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational psychology services</td>
<td>2.1 (1.18 - 3.74)*</td>
<td>0.5 (0.28 - 0.90)*</td>
<td>1.0 (0.56 – 1.68)</td>
</tr>
<tr>
<td>Risk to get into fights (M.I.N.I. b)</td>
<td>2.0 (1.18 - 3.43)**</td>
<td>1.9 (1.14 – 3.34)*</td>
<td>0.8 (0.48 – 1.36)</td>
</tr>
<tr>
<td>WURS-25 category c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low category (< 40)</td>
<td>1.0 (0.50 – 2.01)</td>
<td>0.9 (0.46 – 1.88)</td>
<td>1.5 (0.74 – 3.03)</td>
</tr>
<tr>
<td>Moderate (40 - 70)</td>
<td>3.0 (1.26 – 7.13)**</td>
<td>3.0 (1.24 – 7.05)**</td>
<td>1.5 (0.69 – 3.54)</td>
</tr>
<tr>
<td>High (≥ 70)</td>
<td>1.0 (0.94 – 1.96)</td>
<td>not in equation</td>
<td>1.1 (1.002 - 1.13)*</td>
</tr>
<tr>
<td>Number of ADHD Hyperactive-Impulsive-symptoms in childhood d</td>
<td>1.2 (1.05 - 1.30)**</td>
<td>1.1 (1.10 - 1.26)*</td>
<td>0.9 (0.82 – 1.02)</td>
</tr>
<tr>
<td>Adult factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comorbid disorders b</td>
<td>not in equation</td>
<td>not in equation</td>
<td>1.6 (1.28 - 2.04)*****</td>
</tr>
<tr>
<td>Number of persistent ADHD</td>
<td>-</td>
<td>-</td>
<td>1.2 (1.005-1.36)*</td>
</tr>
<tr>
<td>Inattention symptoms in adulthood d</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ASRS Inattention Score e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low category (< 24)</td>
<td>-</td>
<td>-</td>
<td>1.0 (0.86 – 2.77)</td>
</tr>
<tr>
<td>Moderate (24 - 31)</td>
<td>-</td>
<td>-</td>
<td>2.7 (1.26 - 5.59)**</td>
</tr>
<tr>
<td>High (≥ 31)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

a. Logistic regression, specified variables entered in the equation, unadjusted Odds Ratio (OR) estimated by entering factors one at a time in the equation. Probability stepwise for entry .05, removal .10. Education status is adjusted only for gender, work status is adjusted for age and gender.
b. Number of disorders by the Mini International Neuropsychiatric Interview (M.I.N.I.) plus version for DSM-IV. c. WURS-25 category: WURS-25 score < 40 → low (ref.), score between 40 – 70 → moderate and score ≥ 70 → high. d. Number of ADHD symptoms by DIVA (DSM-IV ADHD criteria) of childhood and adulthood assessed separately. e. Adult ADHD Self report Scale, subscale of 9 ADHD inattentive symptoms (score range 0 - 36); inattention category by quartiles: score < 24 → low (ref.). *p < 0.05, **p < 0.01, ***p < 0.001, OR (CI: 95%), logistic regression, sig. 2-tailed.
References

attention deficit hyperactivity disorder: results from an 11-year controlled follow-up study. Acta Psychiatr Scand 125:147-156

Hayes SC (2000) Hayes Ability Screening Index. Manual. Sydney: Faculty of Medicine, University of Sydney

Kessler RC, Adler LA, Barkley R, Biederman J, Conners CK, Faraone SV, Greenhill LL, Jaeger S, Secnik K,

Kooij JJS, Francken MH (2010) DIVA 2.0. Diagnostic Interview Voor ADHD in Adults bij volwassenen [DIVA 2.0 Diagnostic Interview ADHD in Adults] DIVA Foundation (http://www.divacenter.eu/DIVA.aspx)

Mannuzza S, Klein RG, Moulton JL, III (2003) Persistence of Attention-Deficit/Hyperactivity Disorder into adulthood: what have we learned from the prospective follow-up studies? J Atten Disord 7:93-100

Mick E, Faraone SV, Spencer T, Zhang HF, Biederman J (2008) Assessing the validity of the Quality of Life Enjoyment and Satisfaction Questionnaire Short Form in adults with ADHD. J Atten Disord 11:504-509

Norwegian version 5

Abstract: How to generalize from randomized placebo controlled trials of ADHD drug treatment in adults to ‘real-world’ clinical practice is intriguing. This open-labeled prospective observational study examined the effectiveness of long-term stimulant and non-stimulant medication in adult ADHD including dose, side-effects and comorbidity in a clinical setting. A specialized ADHD outpatient clinic gave previously non-medicated adults (n=250) with ADHD methylphenidate as first-line drug according to current guidelines. Patients who were non-tolerant or experiencing low efficacy were switched to amphetamine or atomoxetine. Primary outcomes were changes of ADHD-symptoms evaluated with the Adult ADHD Self-Report Scale (ASRS) and overall severity by the Global Assessment of Functioning (GAF). Secondary outcomes were measures of mental distress, and response on the Clinical-Global-Impressions-Improvement Scale. Data at baseline and follow-ups were compared in longitudinal mixed model analyses for time on-medication, dosage, comorbidity, and side-effects. As results, 232 patients (93%) completed examination at the 12 month endpoint, and 163 (70%) remained on medication. Compared with the patients who discontinued medication, those still on medication had greater percentage reduction in ASRS-scores (median 40%, versus 12%, P<0.001) and greater improvement of GAF (median 20% versus 4%, P<0.001) and secondary outcomes. Continued medication and higher cumulated doses showed significant associations to sustained improvement. Conversely, psychiatric comorbidity and side-effects were related to lower effectiveness and more frequent termination of medication. Taken together, one-year treatment with stimulants or atomoxetine was associated with a clinically significant reduction in ADHD symptoms and mental distress, and improvement of measured function. No serious adverse events were observed.
Cover letter

How well randomized controlled trial data in adult ADHD patients can be generalized to ‘real-world’ clinical practice may be questioned, and according to reviews of treatment studies on ADHD medication for adults, more prospective naturalistic studies are warranted. This is a large single-site naturalistic treatment study of current ADHD medication in a European country performed on a clinical cohort of previous untreated ADHD adults. To our knowledge this is the first naturalistic prospective study to evaluate longitudinally long-term effectiveness of ADHD medication including multivariate analyses with adjustment for time in treatment, dose, side-effects and comorbidity. At one-year follow-up a large proportion (93%) completed the study. The study received no financial support from pharmaceutical industry.
Highlights

- We examine effectiveness of one year pharmacotherapy of adult ADHD patients
- Longitudinal analyses show sustained improvement linked to medication at follow-up
- Higher dosages of medication over time are associated with greater improvement
- Comorbidity and side-effects decrease effectiveness and adherence
- No serious adverse effects occurred
Effectiveness of one-year pharmacological treatment of adult attention-deficit/hyperactivity disorder (ADHD):

An open-label prospective study of time in treatment, dose, side-effects and comorbidity

The authors:

Mats Fredriksen MD a, b, *; Alv A. Dahl MD, PhD b, c; Egil W. Martinsen, MD, PhD b, d; Ole Klungsøy, PhD b, d; Jan Haavik MD, PhD e,f,g; and Dawn E. Peleikis MD, PhD h

aDivision of Mental Health and Addiction, Vestfold Hospital Trust, N-3101 Tønsberg, Norway
bUniversity of Oslo, N-0318 Oslo, Norway
cDepartment of Oncology, Oslo University Hospital, Radiumhospitalet, N-0424 Oslo, Norway
dClinic for Mental Health and Addiction, Oslo University Hospital, N-0514 Oslo, Norway
eDepartment of Biomedicine, University of Bergen, 5009 Bergen, Norway
fDivision of Psychiatry, Haukeland University Hospital, Bergen, 5021 Bergen, Norway
gK.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway
hDepartment of Psychiatry, Akershus University Hospital, Grorud Outpatient Clinic, N-1478 Lørenskog, Norway

*Corresponding author: Dr. Mats Fredriksen, M.D.
Corresponding author's institution: Division of Mental Health & Addiction, Vestfold Hospital Trust, N-3101 Tønsberg, Norway

e-mail: mats.fredriksen@siv.no
telephone number: +47 33375921
mobile number: +4793493297
fax number: +47 33374698
Abstract

How to generalize from randomized placebo controlled trials of ADHD drug treatment in adults to 'real-world' clinical practice is intriguing. This open-labeled prospective observational study examined the effectiveness of long-term stimulant and non-stimulant medication in adult ADHD including dose, side-effects and comorbidity in a clinical setting.

A specialized ADHD outpatient clinic gave previously non-medicated adults (n=250) with ADHD methylphenidate as first-line drug according to current guidelines. Patients who were non-tolerant or experiencing low efficacy were switched to amphetamine or atomoxetine. Primary outcomes were changes of ADHD-symptoms evaluated with the Adult ADHD Self-Report Scale (ASRS) and overall severity by the Global Assessment of Functioning (GAF). Secondary outcomes were measures of mental distress, and response on the Clinical-Global-Impressions-Improvement Scale. Data at baseline and follow-ups were compared in longitudinal mixed model analyses for time on-medication, dosage, comorbidity, and side-effects.

As results, 232 patients (93%) completed examination at the 12 month endpoint, and 163 (70%) remained on medication. Compared with the patients who discontinued medication, those still on medication had greater percentage reduction in ASRS-scores (median 40%, versus 12%, P<0.001) and greater improvement of GAF (median 20% versus 4%, P<0.001) and secondary outcomes. Continued medication and higher cumulated doses showed significant associations to sustained improvement. Conversely, psychiatric comorbidity and side-effects were related to lower effectiveness and more frequent termination of medication.

Taken together, one-year treatment with stimulants or atomoxetine was associated with a clinically significant reduction in ADHD symptoms and mental distress, and improvement of measured function. No serious adverse events were observed.
1. Introduction

Current medical treatment of attention deficit/hyperactivity disorder (ADHD) in adults primarily involves the psychostimulants and atomoxetine, and the prevalence of dispensed ADHD medications are increasing (Zetterqvist, Asherson, Halldner, Langstrom, & Larsson, 2013). The stimulants methylphenidate (MPH) and amphetamine (AMP) have a well-documented efficacy in short-term treatment (Atkinson & Hollis, 2010; Gibbins & Weiss, 2007; Faraone & Glatt, 2010). Atomoxetine (ATX), classified as a non-stimulant drug, has also shown beneficial effects on adult ADHD in randomized controlled trials (RCTs) (Michelson et al., 2003; Adler, Spencer, Williams, Moore, & Michelson, 2008; Adler et al., 2009; Young, Sarkis, Qiao, & Wietecha, 2011). However, most RCTs of adult ADHD are short-term studies of four to ten weeks duration (Faraone & Glatt, 2010; Fredriksen, Halmoy, Faraone, & Haavik, 2013). Only a few last 24 weeks or longer (Rosler, Fischer, Ammer, Ose, & Retz, 2009; Biederman et al., 2010; Adler et al., 2009; Young et al., 2011), and some short-term trials have been conducted with open-label extensions (Ginsberg & Lindefors, 2012; Buitelaar et al., 2011; Marchant, Reimherr, Halls, Williams, & Strong, 2010; Wender et al., 2011; Adler, Spencer, McGough, Jiang, & Muniz, 2009; Weisler et al., 2009).

Although these studies show beneficial effects of medication, their clinical relevance is unresolved, since the samples are typically small at endpoints due to the high rates of drop-out, and selection bias is also likely since patients have typically had low rates of comorbid disorders (Weiss, Gadow, & Wasdell, 2006). To study effectiveness of treatment, variables such as treatment adherence, side-effects, comorbidity and patient preferences should be included, in addition to the target ADHD symptoms, in order to evaluate the results from short-time RCTs in a broader clinical context and performed on a clinically less selected patient population (Weiss et al., 2010).

Few long-term prospective studies have been conducted on adult ADHD patients in a practical clinical setting (Powell, Thomsen, Frydenberg, & Rasmussen, 2011; Weiss et al., 2010; Bejerot, Ryden, & Arlinde, 2010; Adler et al., 2011). A naturalistic two-year follow-up study (Bejerot et al., 2010) examined adherence to stimulant treatment, side-effects and medication discontinuation in adult ADHD patients. The authors reported that 80% were treated with stimulants at 9-month follow-up, and
50% remained in treatment after two years. Being a responder predicted adherence to medication, and increased effect in the six to nine month follow-up was observed in the group that continued medication at endpoint. Many dropped out earlier than 6 weeks for unknown reasons (19%), and anxiety and depression were the most common reasons for discontinuing medication. Major limitations of their study include sample selection bias and attrition.

In an observational study of medicated patients aged 7-21 years (Powell et al., 2011) stimulant dosages varied over time and with individual factors. Comorbidity and young age were significantly related to higher dosages. Limitations include selection bias due to patients entering and leaving at different stages of treatment, lack of reports on side-effects, and problems with defining common endpoints. A one-year open-label prospective study (Adler et al., 2011) evaluated long-term safety of osmotic release formulation of MPH, and found that a flexible dosage-regime was well tolerated, but only 44% completed 12 months of treatment. The most prevalent side-effects were decreased appetite, headache, and insomnia.

These studies discuss limitations concerning sample selection and attrition, drugs and assessments applied, and more clinical relevant naturalistic long-term studies of ADHD drug treatment are warranted (Fredriksen et al., 2013). The need for further knowledge regarding clinical use of ADHD medication in adults is reflected in several published treatment guidelines as well (CADDRA, 2008; Norwegian Directorate of Health, 2005; National Collaborating Centre for Mental Health, 2009; Gibbins & Weiss, 2007), and considerable variations regarding medication regimes and use both within and across nations have been reported (Hinshaw et al., 2011; Zoega et al., 2011). Therefore, observational studies evaluating clinical relevant medical treatment by effectiveness related to time on treatment, dose, side-effects and comorbidity in a long-term perspective are needed.

The aim of this naturalistic study was to examine the one-year effectiveness of a current drug treatment regime for adult ADHD with MPH being the first-line medication (Norwegian Directorate of Health, 2005), and outcomes moderated by, age, gender, time on treatment, dosage, side effects, and comorbidity.
2. Experimental procedures

2.1. Subjects

The study was conducted at the Specialized Outpatient Clinic at Vestfold Hospital Trust, with 250,000 adult inhabitants in the catchment area. In the Norwegian National Health Service, patient medication is almost free of charge. Referred patients aged 18 to 60 were recruited consecutively. The subjects had to fulfill DSM-IV criteria for ADHD. Exclusion criteria included any major mental disorder assessed by a board certified psychiatrist considered to be in immediate need of treatment, such as current psychosis, major depression with melancholia or suicidal ideation, panic attacks with increasing frequency, or alcohol- or substance abuse last two months. Furthermore, exclusion criteria were; any medical contraindications for stimulant treatment such as hyperthyroidism, cardiovascular diseases or cardiac arrhythmias were, having previously tried stimulant medication in adulthood or during the prior five years for patients 18 years of age, an Intelligence Quotient (IQ) under 70 based on the Wechsler Adult Intelligence Scale IV (Wechsler, 2008), or assessed with clinical symptoms and behaviors consistent with a pervasive developmental disorder/autism spectrum disorder.

During the inclusion period from May 2009 to December 2010, 620 patients were referred and evaluated, and 358 (58%) were excluded since they met one or more of the exclusion criteria. Additionally 12 eligible patients declined to take part, leaving a total of 250 stimulant naïve adult patients for the clinical studies.

2.2. Diagnostic assessments

Two board-certified psychiatrists assessed the ADHD diagnosis according to DSM-IV Text Revision criteria (American Psychiatric Association, 2000) by a multisource procedure (Haavik, Halmoy, Lundervold, & Fasmer, 2010) using the Diagnostic Interview for ADHD in Adults, second edition (DIVA 2.0) (Kooij & Francken, 2010). Patients with 5 or more out of 9 symptom criteria of one or both symptom domain for inattention or hyperactivity-impulsivity in adulthood were included if full
symptom criteria were met in childhood, and symptoms caused significant impairment in social, academic, or occupational functioning.

Comorbid mental disorders were examined by the MINI International Neuropsychiatric Interview Plus (M.I.N.I.-Plus) for DSM-IV (Sheehan et al., 1998) mood disorders, anxiety disorders, somatoform disorders, substance use disorders, psychotic disorders, eating disorders, conduct disorder, antisocial personality disorder (ASPD), ADHD, and adjustment disorder (Sheehan et al., 1998; Sheehan et al., 2002). All patients with any psychiatric comorbidity considered in need of treatment should undergo at least three months adequate therapy before inclusion. The investigator rated Iowa Personality Disorder Screen (IPDS) was applied to screen for personality disorders (Langbehn et al., 1999; Olsson, Sorebo, & Dahl, 2011). Those meeting criteria were still included in the study if the ADHD symptoms were not considered better accounted for by a personality disorder.

Supplementary information on childhood symptoms were collected from school records, parents, and any close relatives who were invited to participate in the DIVA interview. In a pilot study, 21 patients were independently examined by the two psychiatrists. For the ADHD diagnosis Cohen’s kappa was 0.77, and for comorbid mental disorders the kappa was 0.79.

Insert Figure 1 about here

2.3. Medication procedures and longitudinal follow-up

All patients received MPH as first-line medication and psychosocial treatment according to the national treatment guidelines (Norwegian Directorate of Health, 2005). Psychosocial interventions included psycho-educational supportive counseling at scheduled visits given by specialized nurses trained to make it as uniform as possible. Patients were assessed for symptoms, function and side-effects at scheduled follow-up visits at six weeks, three months, six months and twelve months. Standard titration with immediate-release methylphenidate (MPH-IR) was prescribed for the first six weeks, with a starting dose of 5 mg three times daily with stepwise increase to maximum 60mg/day, thereafter flexible dose titration to optimize efficacy (maximum 120mg/day). Shift to depot-
formulation/extended-release MPH (MPH-ER) was offered at the three-month visit. The dosage could be decreased at any time if there was a lack of tolerability.

If MPH was not tolerated or ineffective, alternative medications were short-acting dextroamphetamine (dAMP), or atomoxetine (ATX) if stimulants were not acceptable; dAMP was titrated until maximum 50mg/day, and dose of ATX began with 25mg/day for seven days followed by 40mg up to maximum 120mg. Patients could use additional medication for comorbid psychiatric disorders, but treatment should not have been initiated within last three months prior to, and first three months following inclusion.

In the pilot study we performed non-announced blood-sampling and examined MPH plasma-concentration from 12 consecutive patients who claimed to have taken their medication 2-3 hours earlier that day. The plasma levels of ritalinic-acid were compatible with intake of therapeutic amounts of methylphenidate in all cases (MPH mean daily-dose 47.0mg, SD = 16.5), the mean plasma-concentration was 1962 nmol/l (SD = 742, range 798 – 3889).

Adherence to medication was assessed by interviews and accounts of prescriptions. Taking the prescribed dose less than 70% of days during last period was considered non-compliant. To ensure abstinence from narcotics health care staff supervised urinary screenings for patients with any substance use over the last year. These assays were performed by liquid chromatography and mass spectrometry.

2.4. Assessments of effectiveness and tolerability

The one primary outcome measure was a change in current ADHD symptoms on the 18-items Adult ADHD Self-Report Scale version 1.1 (ASRS) (Norwegian-version) (Kessler et al., 2005). We used the continuous scoring method (Kessler et al., 2005), and frequency of ADHD symptoms present for the last six months (since the last visit), self-rated on a 5-point scale. Sum scores range from 0 - 72 points for the total symptom load, and from 0 - 36 on the nine inattentive and hyperactive-impulsive criteria. Cronbach’s alpha for the total scale was 0.86, for inattention and on hyperactivity-impulsivity subscales alpha values were 0.73 and 0.80.
The two psychiatrists assessed overall severity by the Global Assessment of Functioning (GAF) Scale (Endicott, Spitzer, Fleiss, & Cohen, 1976; American Psychiatric Association, 2000). We used the split version of symptom (GAF-S) and function (GAF-F) to improve reliability (range 0 – 100) (Pedersen, Hagtvet, & Karterud, 2007). The intra-class correlation coefficient between the assessors of GAF-S was 0.83 and 0.79 of GAF-F in the pilot (n = 21). The investigators were blind to prior assessments and not involved in the psychosocial treatment.

Secondary outcome measures included the Clinical Global Impressions-Improvement Scale (CGI-I) (Guy & National Institute of Mental Health (US), 1976) and the Symptom Checklist-90 Revised (SCL-90-R) (Derogatis & Savitz, 1999). Response rate was assessed by CGI-I at 52 weeks endpoint. The degree of change from baseline was assessed on a seven-point scale (very much improved = 1 to very much worse = 7), and we defined responders as those who scored much or very much improved (CGI-I-2) or not. Level of mental distress over the last week was self-rated with the SCL-90-R. The 90 items were scored on a 5-point scale, and the mean score of all items is referred to as the Global-Severity-Index (GSI).

Any side-effects were recorded by free registration of complaints from the patients. Additionally, we applied a quantitative measure of tolerability by the Canadian Attention Deficit Hyperactivity Disorder Resource Alliance (CADDRA, 2008). The questionnaire lists symptoms frequently associated with stimulant treatment, and each item is scored by frequency (score 0–3).

Body weight, heart rate, systolic and diastolic blood pressure were measured pretreatment and at each visit during treatment. Electro-cardiographical monitoring was recorded pretreatment and at endpoint (Stiefel & Besag, 2010).

2.5. Statistical analysis

Statistical analyses were carried out by The PASW statistics (version 17) for Windows. Power analysis determined the sample size with the assumption that about 200 patients would complete at 12-month. We used t-test for continuous variables and the chi-square test and Fisher’s exact test for categorical ones, and non-parametric tests when skewe distributions were observed. Patients
continuing on-medication were compared with those off-medication in a visit-wise analysis, and tests for independent groups were used to assess the differences between groups at follow-up. Changes in outcome variables from baseline to endpoint in individuals were analyzed using paired sample tests.

Longitudinal analyses by linear mixed models (LMM) were performed to assess treatment effect on change over time in the following outcomes (Gueorguieva & Krystal, 2004): ASRSv.1.1, GAF-S, GAF-F and GSI. Potential confounders for the association between treatment and outcome were gender and age at inclusion, with adjustments for indicators of comorbid disorders. Model selection was based on maximum likelihood (and restricted maximum likelihood) and non-significant covariates were excluded (Supplementary material). The time course of the outcomes was modeled with two piecewise linear splines, prior to and following a defined time point (t^*), where t^* was 6 weeks for ASRS and 26 weeks for GAF-S, GAF-F and GSI. To assess a dose-response relationship of treatment, a cumulative dose covariate was constructed. Cumulative amount of mean values of side-effects (CADDRA) was also adjusted for to reduce potential selection bias from loss to follow-up, and contributed to a conservative estimate of the treatment effect.

2.6. Ethics and approvals

The study was approved by The National Committee for Research Ethics of the Health Region South-East, and The Norwegian Social Science Data Services. The study protocol also was presented to the Norwegian Medicines Agency. They determined this to be a naturalistic study with follow-up of patients in treatment, according to the current national guidelines, and it was therefore not registered as a clinical trial. After a complete description of the study was presented, all participants provided written informed consent before enrollment.
3. Results

3.1. Demographics, attrition and clinical characteristics

At inclusion mean age was 32.6 years (SD = 9.8), 52% were females. Many were currently unemployed or on disability pension (56%) (Table 1), and 75% had comorbid mental disorders. At the one-year endpoint 232 patients were successfully reassessed (Figure 1), and 163 (70%) continued on any ADHD medication, including 87 females and 76 males. Figure 1 also displays type and formulation of ADHD medication of those persisting medicated. A larger proportion of patients who discontinued medication (total 87) had comorbid mental disorders, compared to patients who stayed on medication (83% versus 71%, $P = 0.02$).

Among the 69 patients who completed study assessments off-medication, 31 reported side effects as reason for termination, 9 reported lack of efficacy, 20 gave no reasons, and two were non-compliant. Twenty-nine terminated medication before 6-week follow-up, and 20 never began, here referred to as never-medicated (Figure 2). Only 18 patients (7%) were lost at one-year follow-up, and most drop-outs ($n = 17$) occurred during the first six months. Patients lost to follow-up were more frequently work-disabled, had less education and more comorbid mental disorders than those completing assessment in the study (Table 1). Sixty-nine percent used drugs other than ADHD medication at baseline, mainly antidepressants (> 90%), and some anxiolytics or sedatives (< 10%). At the 12-month endpoint about half of the MPH-users ($n = 65$) preferred extended-release formulations (Figure 1).

Insert Table 2 about here

3.2. Primary outcomes

Table 2 presents effectiveness outcomes comparing patients being on- and off-medication at each follow-up assessment. At three months those on-medication had a significantly larger percentage reduction of ASRS total score than those who had stopped medication (median 36% versus 25%, $P < 0.001$), and this difference was further enhanced at one year; patients remaining on-medication had
even higher percentage reduction than those off-medication (median 39% versus 13%, \(P < 0.001\)). At one year in both groups individuals showed statistically significant changes from baseline (\(P < 0.001\)) (Table 2), though those never treated with any ADHD drugs from six week showed no significant changes from baseline (Figure 2).

Figure 2 illustrates longitudinal measures of the outcomes stratified by patients’ status of using ADHD medication. Reduction in ADHD symptoms was greater for those on-medication at each visit compared with those never-medicated or those discontinued medication.

Table 3 presents fixed effect estimates (corresponding to the beta standardized regression coefficient values) of covariates or confounders in the longitudinal mixed model (Supplementary material of statistics). A significant dose-response effect was found in the linear mixed model for both primary and secondary outcomes with adjustment for confounders (Table 3). Larger cumulative dose was associated with reduced ADHD symptoms during the first six weeks (‘Time 1’ fixed estimate or \(beta = -0.1, P < 0.001\)) and even greater reduction in the remainder of the study period (during ‘Time 2’; \(beta = -0.1, P < 0.001\)). Effect of time on treatment (‘Time factor’ in the model) independent of medication or identified confounders, was found statistically significant associated to improved outcomes during the first time-period ‘Time 1’ (\(P < 0.001\)), but not in the long term follow-up (‘Time 2’) (Table 3).

Less improvement was found for females compared to males (\(beta = 3.2, P < 0.001\)), for those with comorbid bipolar disorders (\(beta = 4.1, P < 0.01\)), or anxiety disorders (\(beta = 3.0, P < 0.01\)) and for cumulative amount of side-effects (by mean values of side-effect rating) (\(beta = 2.2, P < 0.001\)).

Functional improvement was shown for both the GAF-S (Figure 2) and the GAF-F. The median change on the GAF-S score of those on-medication compared with those off-medication was statistically significantly increased from baseline to endpoint (median change 20%, versus 2%, \(P < 0.001\)), and correspondingly on GAF-F (median change 18%, versus 6%, \(P < 0.001\)). In the mixed model (Table 3) a larger cumulative dose was associated with a higher increase in the GAF-F (\(beta = 0.04, P < 0.001\)). Significantly less improvement was found for those with additional anxiety
disorders (beta = -3.2, P < 0.001), substance use disorders (beta = -2.2, P < 0.05) and cumulative amount of side-effects (beta = -0.8, P < 0.001).

3.3. Secondary outcomes

Responders assessed by the psychiatrists at 12-month follow-up included 144 patients being evaluated with CGI-I-values of much or very much improved (CGI-I ≤ 2), and out of 142 patients (87%) among those were continuing on-medication versus two (3%) off-medication (P < 0.001). Those on-medication showed significantly greater improvement on mental distress (GSI) than those who discontinued (mean change of -0.62, SD = 0.56 versus -0.31, SD = 0.63, P < 0.01) at one-year follow-up (Table 2).

In the mixed model a larger cumulative dose (in mg) of medication was associated with significant reduction in GSI (beta = - 0.002, P < 0.001), while less improvement in GSI was found for comorbid depression (beta = 0.3, P < 0.001), anxiety (beta = 0.4, P < 0.001) and cumulated side-effects (beta = 0.1, P < 0.001) (Table 3).

3.4. Safety and tolerability

Two patients were hospitalized due to symptoms unrelated to ADHD medication, as both had discontinued medication several months prior to hospital admission. One had suicidal thoughts, the other had esophagitis. During the study 73 (30%) patients reported any side-effects on MPH. Thirty-one (12%) finally terminated their medication due to one or more side-effects on any of the ADHD drugs, and among these 13 (42%) had discontinued within 6 weeks, 22 (68%) within 16 weeks, and 28 (90%) during first 26 weeks of treatment. The most common side-effects leading to termination were

Insert Figure 2 about here

Insert Table 3 about here
heart palpitations, mood instability, nausea, agitation, anxiety, dry mouth, fatigue, headache, tics and stomach aches (Supplementary Table 1).

Nine patients had an increase in blood pressure, exceeding the safety limit of 150/95 mmHg, and had to interrupt medication. All of them had a borderline blood pressure level at baseline (140/90mmHg), and eight of them resumed their ADHD medication after attained normotensive values by instituted antihypertensive treatment. Completers on-medication compared with those off-medication showed statistically significantly increased heart-rates at endpoint (average 5.2 beat/min, SD = 11.6 versus 0.4 beat/min, SD = 13.4, P = 0.005), and the mean increase of heart rate correlated with an equivalent dose of medication (Pearson r = 0.22, P = 0.002). There was no significant prolongation in electrocardiographical QTc (Supplementary Table 2).

4. Discussion

To our knowledge this is the largest single-site clinical cohort prospective study on medication-naïve adults, and the first to evaluate longitudinally long-term effectiveness of ADHD medication including multivariate analyses adjusted for time in treatment, dose, side-effects and comorbidity. This study was implemented in a general clinical setting, and we observed sustained improvements of patients who continued on-medication compared with those who discontinued. Higher dosage of medication over time was associated with greater improvement, while side-effects and comorbidities were related to less effectiveness. These differences in effectiveness between those being on and off medication appeared early in treatment, and were accompanied by a gradual increase during the follow-up visits.

Significant reductions of both inattention and hyperactivity/impulsivity were observed. Severity of global symptoms and function improved, and responder-rates differed significantly in favor of those continuing on-medication. There was also a significant reduction in mental distress with co-occurring symptoms in patients who remained on-medication. Although medication was generally well tolerated, almost one third discontinued medical treatment.
The significant reduction of ADHD symptoms is consistent with published RCTs and extension studies on the long-term effectiveness of single ADHD drugs (Fredriksen et al., 2013; Adler et al., 2009; Adler et al., 2008; Biederman et al., 2010; Rosler et al., 2009; Young et al., 2011). The improvement of global severity and function and the reduction of mental distress correspond well with broader beneficial outcomes found in studies exploring such characteristics (Wender et al., 2011; Weiss et al., 2010; Ginsberg & Lindefors, 2012; Adler et al., 2009). Signs of sustained and increasing improvement during the first year (Fig. 2) have also been previously reported (Adler et al., 2009).

Interestingly, partly non-adherent patients had effectiveness outcomes that were intermediate between the fully compliant and non-medicated groups, which may indicate some long-lasting treatment effects (Biederman et al., 2010). Our results of 70% completion on-medication are in line with the findings in another study (Bejerot et al., 2010).

We found a greater improvement in ADHD symptoms for males than for females, in contrast to studies reporting no differences between sexes (Rosler et al., 2010; Wender et al., 2011), or reports of even greater improvement for females by measures of emotional dysregulation (Marchant et al., 2010). However, we found no gender differences in the global GAF-measures or for mental distress, and adherence at endpoint did not differ between the sexes, similar to reports by a three years retrospective study (Torgersen, Gjervan, Nordahl, & Rasmussen, 2012).

Improvement on medication was found despite presence of comorbid psychiatric disorders. However, comorbid anxiety and bipolar disorders were associated with less effectiveness. Retrospective studies have found comorbidity related to less adherence to medication (Lensing, Zeiner, Sandvik, & Opjordsmoen, 2013; Torgersen et al., 2012), corresponding with our findings of less comorbidity among those adherent to treatment.

Medication dosage seemed adequate, and in line with other studies on adults (Wender et al., 2011; Adler et al., 2011; Marchant et al., 2010). As reported in a study of a younger patient population (aged 9-21 years) (Powell et al., 2011) we found variations in dosages across time and individuals, although patients with highest dosages had the best response. The flexible dose regime allowed for individualized dosing. About half of the MPH-using patients preferred short-
acting formulation, despite the fact that this required multiple daily intake and involved possible wearing-off and rebound effects.

Noteworthy, measures of cumulated side-effects showed an inverse relationship with the effectiveness outcomes. Reasons to terminate medication included side-effects such as heart palpitations, mood instability, nausea, agitation and anxiety. This is consistent with other studies on safety and tolerability (Adler et al., 2011; Bejerot et al., 2010; Buitelaar et al., 2011). Most patients experienced mild side-effects. Less than half who discontinued medication reported side-effects, most of them early during treatment. The nine patients who exhibited increase of blood pressure exceeding the safety limits also had borderline elevated blood pressure at baseline, something that should be taken into account in clinical practice. Several patients who continued on medication had slightly increased heart rate, and the long-term consequences of such persistent adrenergic effects are unresolved in adults (Vitiello et al., 2012). We found no significant change in the ECGs, including QTc on treatment.

This naturalistic study has the inherent limitations of using an open-label design. It is possible that patients were inclined to overestimate treatment effectiveness. The prospective design and blinding of previous assessments and responses to questionnaires are not considered to compensate for this bias. The applied medication regime with MPH as first-line drug, and a second-line and low proportion of AMP and ATX-using patients, precluded comparisons of effectiveness between the different drugs, or between the stimulants and non-stimulants in the study. However, patients using ATX as a second-line medication, if stimulants were not effective or tolerated, had a statistically significantly higher responder-rate than those who discontinued drug treatment.

Furthermore, the naturalistic design involved that the patients not only have received medication, but also psychosocial treatment. This was not what we aimed to revaluate, namely the effectiveness of drug treatment. Although, the nurses were trained to perform the psycho-educational counseling as uniform as possible, this non-medical intervention have potential to affect the data. However, it is not clear how. Patients who discontinued medication could be prone either to be more or less susceptible to the endeavored uniform approaches of the nurses.
Time varying confounding is another source of bias probably not fully accounted for in our LMM, and might have been addressed with a more comprehensive model. Also, the missing at random assumption in the LMM is questionable, even though loss to follow-up was small and partly adjusted for by cumulative amount of side-effects. In spite of the estimated treatment effect falling short of a "true" causal effect, the LMM was considered to be a "sound" choice, with its widespread recognition and ability to address, at least partly, the problems of confounding and loss to follow-up. A dose-response effect of treatment was found to be strong, even in the presence of the additional time covariates which should yield a conservative estimate.

With the stated limitations, these results should provide realistic guidance for clinicians in everyday practice, and supplement previous knowledge regarding the effectiveness of ADHD medication regimes. Although most patients reported improvement on medication, a significant proportion did not respond properly or did not tolerate any of the current drugs. Further research is needed on these subgroups of patients.
References

Olsson, I., Sorebo, O., & Dahl, A. A., 2011. A cross-sectional testing of The Iowa Personality Disorder Screen in a psychiatric outpatient setting. BMC. Psychiatry 11, 105.

Table 1 Sample characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All Patients</th>
<th>Lost to follow-up</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 250</td>
<td>n = 18</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>129 (52)</td>
<td>6 (33)</td>
<td>2.59 0.11</td>
</tr>
<tr>
<td>Unemployed or work disabled</td>
<td>140 (56)</td>
<td>15 (83)</td>
<td>6.04 0.01</td>
</tr>
<tr>
<td>DSM-IV subgroups of adult ADHD (DIVA 2.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADHD-Inattentive</td>
<td>97 (39)</td>
<td>8 (44)</td>
<td>1.98 0.49</td>
</tr>
<tr>
<td>ADHD-Combined</td>
<td>113 (45)</td>
<td>6 (33)</td>
<td>- -</td>
</tr>
<tr>
<td>ADHD-Hyperactive</td>
<td>17 (7)</td>
<td>1 (6)</td>
<td>- -</td>
</tr>
<tr>
<td>ADHD-Residual</td>
<td>23 (9)</td>
<td>3 (3)</td>
<td>- -</td>
</tr>
<tr>
<td>Psychiatric comorbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major depressive episode</td>
<td>59 (24)</td>
<td>6 (33)</td>
<td>1.02 0.31</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>39 (16)</td>
<td>4 (22)</td>
<td>0.65 0.42</td>
</tr>
<tr>
<td>Anxiety disorder (last year)</td>
<td>136 (54)</td>
<td>15 (83)</td>
<td>6.55 0.01</td>
</tr>
<tr>
<td>Alcohol use disorder (last year)</td>
<td>38 (15)</td>
<td>5 (28)</td>
<td>2.38 0.12</td>
</tr>
<tr>
<td>Drug use disorder (last year)</td>
<td>36 (14)</td>
<td>3 (17)</td>
<td>0.08 0.78</td>
</tr>
<tr>
<td>Antisocial behavior problems</td>
<td>42 (17)</td>
<td>5 (28)</td>
<td>1.65 0.20</td>
</tr>
<tr>
<td>Any comorbid disorder</td>
<td>188 (75)</td>
<td>16 (8)</td>
<td>1.95 0.16</td>
</tr>
<tr>
<td>Treatment characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concomitant medication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>156 (69)</td>
<td>14 (78)</td>
<td>0.67 0.41</td>
</tr>
<tr>
<td>One year end-point (n = 232)</td>
<td>98 (42)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Continued on ADHD-medication at end-point</td>
<td>163 (65)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Responders of the medicated at end-point</td>
<td>142 (87)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Age (years)</td>
<td>32.5 (9.8)</td>
<td>33.6 (9.8)</td>
<td>0.52 0.60</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>77.0 (16.8)</td>
<td>77.9 (16.8)</td>
<td>0.14 0.60</td>
</tr>
<tr>
<td>Years of education</td>
<td>11.0 (2.3)</td>
<td>10.1 (1.6)</td>
<td>1.98 <0.05</td>
</tr>
<tr>
<td>Number of comorbid disorders</td>
<td>1.5 (1.2)</td>
<td>2.5 (0.8)</td>
<td>3.97 <0.001</td>
</tr>
<tr>
<td>Treatment characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative number of consultations at end-point</td>
<td>8.4 (1.2)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Medication at end-point (mg daily dose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylphenidate (n = 128)</td>
<td>60.7 (24.1)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dextroamphetamine (n = 25)</td>
<td>30.6 (11.9)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atomoxetine (n = 10)</td>
<td>41.0 (11.7)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mean equivalent ADHD-medication</td>
<td>59.5 (24.0)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mean ADHD-medication per kg body weight</td>
<td>0.83 (0.36)</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

† Sample characteristics at baseline if not otherwise specified (n = 250).
 a. The structured Diagnostic Interview for ADHD in adults, second edition (DIVA 2.0).
 b. Psychiatric comorbidity assessed by the Mini International Neuropsychiatric Interview for DSM-IV, lifetime if not otherwise specified.
 c. Concomitant non-ADHD medication (95% antidepressants, 3% neuroleptics, 2% other drugs), compared baseline to end-point for (n = 232) patients completed study.
 d. Responders defined by Clinical Global Impressions-Improvement (CGI-I) at end-point compared with baseline; much or very much improved (CGI-I score ≤ 2).
 e. ADHD-medication at end-point, atomoxetine included, mean dose of amphetamine mg is doubled to be equivalent to methylphenidate dose.
Table 2 Outcomes by repeated measures of patients being on- and off-medication for ADHD

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>On-medication</th>
<th>Off-medication</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Mean (SD)</td>
<td>n Mean (SD)</td>
<td>t df P</td>
</tr>
<tr>
<td>Adult ADHD Self-Report Scale (ASRS) b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>0 50.4 (10.2)</td>
<td>250 50.4 (10.2)</td>
<td>- - -</td>
</tr>
<tr>
<td>6 weeks</td>
<td>210 32.9 (12.4)</td>
<td>20 43.9 (11.2)</td>
<td>3.1 221 0.002</td>
</tr>
<tr>
<td>3 months</td>
<td>201 32.4 (12.3)</td>
<td>37 43.3 (12.5)</td>
<td>4.9 236 <0.001</td>
</tr>
<tr>
<td>6 months</td>
<td>162 28.8 (11.7)</td>
<td>42 46.3 (9.6)</td>
<td>9.0 202 <0.001</td>
</tr>
<tr>
<td>One-year</td>
<td>163 30.6 (11.5)</td>
<td>69 42.3 (12.7)</td>
<td>6.9 230 <0.001</td>
</tr>
<tr>
<td>End-point change from pretreatment c</td>
<td>163 19.8** (12.0)</td>
<td>69 8.1** (12.4)</td>
<td>7.0 230 <0.001</td>
</tr>
<tr>
<td>Inattention score (9 items)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>0 26.9 (5.3)</td>
<td>250 26.9 (5.3)</td>
<td>- - -</td>
</tr>
<tr>
<td>6 weeks</td>
<td>210 17.8 (6.8)</td>
<td>20 23.1 (4.8)</td>
<td>2.8 221 0.006</td>
</tr>
<tr>
<td>3 months</td>
<td>201 17.3 (6.8)</td>
<td>37 23.0 (6.1)</td>
<td>4.7 236 <0.001</td>
</tr>
<tr>
<td>6 months</td>
<td>162 16.1 (6.5)</td>
<td>42 24.3 (5.4)</td>
<td>7.5 202 <0.001</td>
</tr>
<tr>
<td>One-year</td>
<td>163 16.7 (6.5)</td>
<td>69 23.0 (6.2)</td>
<td>6.8 230 <0.001</td>
</tr>
<tr>
<td>End-point change from pretreatment b</td>
<td>163 10.2** (6.6)</td>
<td>69 3.9** (6.6)</td>
<td>7.5 230 <0.001</td>
</tr>
<tr>
<td>Hyperactivity-Impulsivity score (9 items)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>0 23.5 (6.9)</td>
<td>250 23.5 (6.9)</td>
<td>- - -</td>
</tr>
<tr>
<td>6 weeks</td>
<td>210 15.1 (6.7)</td>
<td>20 20.8 (6.7)</td>
<td>3.0 221 0.003</td>
</tr>
<tr>
<td>3 months</td>
<td>201 15.1 (6.6)</td>
<td>37 20.3 (7.5)</td>
<td>4.3 236 <0.001</td>
</tr>
<tr>
<td>6 months</td>
<td>162 12.7 (6.4)</td>
<td>42 22.0 (6.0)</td>
<td>8.4 202 <0.001</td>
</tr>
<tr>
<td>One-year</td>
<td>163 13.9 (6.2)</td>
<td>69 19.4 (8.0)</td>
<td>5.7 230 <0.001</td>
</tr>
<tr>
<td>End-point change from pretreatment b</td>
<td>163 9.6** (6.9)</td>
<td>69 4.1** (7.1)</td>
<td>5.2 230 <0.001</td>
</tr>
<tr>
<td>Global Assessment of Functioning (GAF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severity of symptoms (GAF-S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>0 52.2 (5.4)</td>
<td>250 52.2 (5.4)</td>
<td>- - -</td>
</tr>
<tr>
<td>3 months</td>
<td>200 57.7 (6.9)</td>
<td>50 52.0 (5.1)</td>
<td>5.4 248 <0.001</td>
</tr>
<tr>
<td>6 months</td>
<td>153 61.1 (6.6)</td>
<td>31 52.2 (6.8)</td>
<td>6.8 182 <0.001</td>
</tr>
<tr>
<td>One-year</td>
<td>157 63.1 (6.5)</td>
<td>56 53.7 (7.0)</td>
<td>9.0 211 <0.001</td>
</tr>
<tr>
<td>End-point change from pretreatment b</td>
<td>157 10.9** (6.9)</td>
<td>56 1.5** (6.1)</td>
<td>8.3 210 <0.001</td>
</tr>
<tr>
<td>Severity of functioning (GAF-F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>0 51.2 (8.0)</td>
<td>250 51.2 (8.0)</td>
<td>- - -</td>
</tr>
<tr>
<td>3 months</td>
<td>200 56.7 (8.3)</td>
<td>50 51.9 (8.0)</td>
<td>3.7 248 <0.001</td>
</tr>
<tr>
<td>6 months</td>
<td>153 60.0 (8.1)</td>
<td>31 52.3 (8.1)</td>
<td>4.8 182 <0.001</td>
</tr>
<tr>
<td>One-year</td>
<td>157 62.0 (9.1)</td>
<td>56 53.9 (8.4)</td>
<td>5.8 211 <0.001</td>
</tr>
<tr>
<td>End-point change from pretreatment b</td>
<td>157 10.8** (8.6)</td>
<td>56 2.0** (9.5)</td>
<td>4.0 210 <0.001</td>
</tr>
<tr>
<td>Psychological distress GSI c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>0 1.36 (0.68)</td>
<td>250 1.36 (0.68)</td>
<td>- - -</td>
</tr>
<tr>
<td>3 months</td>
<td>188 0.83 (0.58)</td>
<td>33 1.21 (0.63)</td>
<td>3.4 219 0.001</td>
</tr>
<tr>
<td>6 months</td>
<td>160 0.68 (0.54)</td>
<td>41 1.29 (0.73)</td>
<td>5.9 199 <0.001</td>
</tr>
<tr>
<td>One-year</td>
<td>161 0.74 (0.54)</td>
<td>67 1.05 (0.77)</td>
<td>3.5 227 0.003</td>
</tr>
<tr>
<td>End-point change from pretreatment b</td>
<td>161 0.62** (0.56)</td>
<td>67 0.31** (0.63)</td>
<td>2.7 226 0.007</td>
</tr>
</tbody>
</table>

† On-medication subjects persisted on any ADHD-medication included atomoxetine at the current visit.

a. t test for equality of means, between independent groups, 2-sided sig. b. Adult ADHD Self-Report Scale (ASRS) total score (18 items version). c. Paired samples t test performed between pretreatment and end-point within group.

** P < 0.001, *P < 0.01, ns = not significant. c. Symptom Check List 90 Revised, Global Severity Index (GSI).
Table 3
Fixed effect of covariates on effectiveness outcomes by longitudinal mixed model analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ADHD-symptoms a</th>
<th>Global severity b</th>
<th>Mental distress c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta† (SE) P</td>
<td>Beta (SE) P</td>
<td>Beta (SE) P</td>
</tr>
<tr>
<td>Females</td>
<td>3.2 (1.1) <0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Males</td>
<td>0 a ref.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Comorbidity (yes =1, no =0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>-</td>
<td>-</td>
<td>0.3 (0.1) <0.001</td>
</tr>
<tr>
<td>Bipolar</td>
<td>4.1 (1.5) <0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anxiety</td>
<td>3.0 (1.1) <0.01</td>
<td>- 3.2 (0.6) <0.001</td>
<td>0.4 (0.1) <0.001</td>
</tr>
<tr>
<td>Substance use</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Antisocial behavior</td>
<td>2.5 (1.5) ns.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Side effects e</td>
<td>2.2 (0.3) <0.001</td>
<td>- 0.8 (0.2) <0.001</td>
<td>0.1 (0.02) <0.001</td>
</tr>
<tr>
<td>Medication dose f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative dose in Time1</td>
<td>- 0.1 (0.03) <0.001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cumulative dose in Time2</td>
<td>- 0.05 (0.01) <0.001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cumulative dose overall</td>
<td>- 0.04 (0.004) <0.001</td>
<td>-0.002 (0.0003) <0.001</td>
<td></td>
</tr>
<tr>
<td>Time factor g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 1</td>
<td>- 2.2 (0.3) <0.001</td>
<td>0.1 (0.03) 0.001</td>
<td>- 0.02 (0.002) <0.001</td>
</tr>
<tr>
<td>Time 2</td>
<td>0.03 (0.03) ns.</td>
<td>0.02 (0.02) ns.</td>
<td>0.002 (0.001) ns.</td>
</tr>
</tbody>
</table>

† Fixed effect estimates (Beta) of covariates on effectiveness outcomes (total score) by longitudinal mixed model analysis.

a. The Adult ADHD Self-Report Scale version 1.1 (ASRSv.1.1) by continuous scoring units.
b. The DSM-IV Clinical Global Assessment of Functioning – Symptoms (GAF-S).
c. The Symptom Checklist-90 Revised (SCL-90-R); the Global Severity Index (GSI).
d. This parameter is set to zero, dichotomous variable of gender.
e. Side effects by cumulative mean values of ratings (Canadian Attention Deficit Hyperactivity Disorder Resource Alliance [CADDRA]).
f. Cumulative dose = summed dosage (mg) used at visits within defined periods of time; analyses of two piecewise linear splines of time prior to and following a defined time point.
g. For the ADHD-symptoms Time 1 is the period of first 6 weeks, and Time 2 thereafter, and for GAF and GSI Time 1 is first 6 months. ns.= not significant
Figure 1: Observational study flow diagram

Assessed for eligibility (n=620)

- Ineligible (n=370)
 - Not meeting diagnostic criteria (n=267)
 - Current substance abuse (n=56)
 - Previous stimulant treatment (n=23)
 - Medical reasons (n=12)
 - Declined to participate (n=10)
 - Other reasons (n=2)

Included into observational ADHD-medication study (n=250)

Standard treatment

- MPH-IR standard titration initial 6 weeks followed by flexible dose regime*
 - Discontinued medication before 6 week follow up (n=29)

Follow-up

- Completed 12 months study of treatment (n=232)

Analysis

- Completed study on-medication (n=163)
 - Type of medication:
 - MPH-IR (n=63)
 - MPH-ER (n=65)
 - dAMP (n=25)
 - ATX (n=10)

- Completed study off-medication (n=69)
 - Side effects (n=31)
 - Lack of efficacy (n=9)
 - Improved (n=3)
 - Pregnancy (n=2)
 - Substance abuse (n=2)
 - No reason given (n=22)

F=females, M=males, MPH-IR=immediate release methylphenidate only, MPH-ER=extended release including osmotic release oral system MPH, dAMP=dextroamphetamine, ATX=atomoxetine.

*MPH standard treatment, six weeks titration followed by flexible dose titration-regime. If former drug was not tolerated or ineffective, AMP or ATX was offered according to current national treatment guidelines.
Figure 2 Primary outcomes during treatment by adherence to medication

(a) Mean Adult ADHD Self-Report Scale (ASRS) total score by group of adherence to medication.

(b) Mean Global Assessment of Functioning Symptom (GAF-S) score (not assessed at 6 week follow-up).

Error bars: 95% CI, * $P < 0.001$, ns.=not significant; mean changes from baseline to endpoint. The never-medicated group ($n=20$): patients discontinued MPH-treatment within first six-week follow-up, and never started up with any ADHD-medication. The discontinued group ($n=72$): patients discontinued their ADHD-medication, but have been taking ADHD-medication any time after six week. The medicated group ($n=140$): patients used ADHD-medication at every follow-up visit. (a) Mean Adult ADHD Self-Report Scale (ASRS) total score by group of adherence to medication. (b) Mean Global Assessment of Functioning Symptom (GAF-S) score (not assessed at 6 week follow-up).
Role of funding sources

Dr. Fredriksen has received a PhD-grant from the Norwegian Extra Foundation for Health and Rehabilitation. The funding sources had no role in the preparation of this manuscript. Dr. Fredriksen had full access to all of the data in the study, and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Contributions

The authors contributed equally to the design and the protocol of the study. Drs. Fredriksen, Haavik and Peleikis managed the literature searches. Drs. Klungsøy and Fredriksen undertook the statistical analysis, and Dr. Fredriksen wrote the first draft of the manuscript. All the authors have contributed substantially to the process of preparing the manuscript and have approved the version submitted.
Conflict of interest

Dr. Fredriksen has no financial relationship with any company whose products are mentioned in this paper, and has no interests to declare. During the past year, Dr. Haavik has received honoraria for a lecture from Janssen-Cilag. In previous years, Dr. Haavik has been on the Advisory Boards or participated in continuing medical education programs sponsored by Novartis, Lilly and Janssen-Cilag. The other authors have no interests to declare.
Acknowledgment

The authors thank Dr. Christian Reissig at the Division of Mental Health and Addiction, Vestfold Hospital Trust, Norway, for his contribution to the implementation of the diagnostics and assessment procedures.
Supplementary material to Paper III

Supplementary Table 1
Side-effects frequency by adverse events (AE) leading to termination of medication

<table>
<thead>
<tr>
<th>Symptom of AEs b</th>
<th>Patients with AEs a (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Heart palpitation</td>
<td>8</td>
</tr>
<tr>
<td>Mood instability</td>
<td>7</td>
</tr>
<tr>
<td>Nausea</td>
<td>7</td>
</tr>
<tr>
<td>Agitation or exitability</td>
<td>6</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>6</td>
</tr>
<tr>
<td>Fatigue</td>
<td>6</td>
</tr>
<tr>
<td>Headache</td>
<td>5</td>
</tr>
<tr>
<td>Tics</td>
<td>5</td>
</tr>
<tr>
<td>Stomach aches</td>
<td>5</td>
</tr>
<tr>
<td>Awakening</td>
<td>4</td>
</tr>
<tr>
<td>Abnormal dreams</td>
<td>4</td>
</tr>
<tr>
<td>Irritability</td>
<td>4</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>4</td>
</tr>
<tr>
<td>Restless feet or body</td>
<td>3</td>
</tr>
<tr>
<td>Insomnia</td>
<td>3</td>
</tr>
<tr>
<td>Worried</td>
<td>2</td>
</tr>
<tr>
<td>Increased blood pressure c</td>
<td>1</td>
</tr>
<tr>
<td>Hair loss</td>
<td>1</td>
</tr>
</tbody>
</table>

a. Adverse events reported by patients who had terminated medication during study-period. Patients could have several side-effects at the same adverse event.

b. Symptoms reported with AEs; several symptoms frequently co-occurred.

c. Increased blood pressure exceeding systolic BP of 145 mmHg or diastolic BP of 90 mmHg with more than 5 mmHg.
Supplementary Table 2
Physical measures by subjects on- and off-medication at endpoint

<table>
<thead>
<tr>
<th>Variable</th>
<th>On-medication</th>
<th>Off-medication</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=154)</td>
<td>(n=65)</td>
<td></td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>Mean 78.3 (16.4)</td>
<td>Mean 75.1 (17.8)</td>
<td>t 1.3 df 228 P 0.18</td>
</tr>
<tr>
<td>End-point</td>
<td>Mean 77.2 (16.0)</td>
<td>Mean 76.2 (18.1)</td>
<td>t 3.8 df 194 P 0.71</td>
</tr>
<tr>
<td>Mean change<sup>b</sup></td>
<td>-0.7<sup>ns</sup> (6.6)</td>
<td>1.3<sup>ns</sup> (7.6)</td>
<td>t 1.6 df 166 P 0.12</td>
</tr>
<tr>
<td>Heart rate (beat min<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>Mean 70.0 (10.5)</td>
<td>Mean 71.3 (15.2)</td>
<td>t 0.74 df 215 P 0.46</td>
</tr>
<tr>
<td>End-point</td>
<td>Mean 75.5 (11.1)</td>
<td>Mean 71.8 (14.3)</td>
<td>t 1.93 df 212 P 0.55</td>
</tr>
<tr>
<td>Mean change<sup>b</sup></td>
<td>5.2 *** (11.6)</td>
<td>0.4<sup>ns</sup> (13.4)</td>
<td>t 2.9 df 197 P 0.005</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>Mean 121.8 (12.7)</td>
<td>Mean 119.0 (13.2)</td>
<td>t 1.48 df 215 P 0.14</td>
</tr>
<tr>
<td>End-point</td>
<td>Mean 124.5 (12.0)</td>
<td>Mean 122.3 (14.0)</td>
<td>t 1.15 df 212 P 0.25</td>
</tr>
<tr>
<td>Mean change<sup>b</sup></td>
<td>2.9 ** (12.8)</td>
<td>2.0<sup>ns</sup> (12.0)</td>
<td>t 0.43 df 198 P 0.67</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment</td>
<td>Mean 77.5 (9.9)</td>
<td>Mean 74.8 (10.0)</td>
<td>t 1.81 df 215 P 0.07</td>
</tr>
<tr>
<td>End-point</td>
<td>Mean 80.1 (9.3)</td>
<td>Mean 79.0 (10.5)</td>
<td>t 0.74 df 212 P 0.46</td>
</tr>
<tr>
<td>Mean change<sup>b</sup></td>
<td>2.5 ** (10.7)</td>
<td>2.6<sup>ns</sup> (10.2)</td>
<td>t 0.01 df 198 P 0.99</td>
</tr>
<tr>
<td>QTc-time (mmsec)<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretreatment (N=207)</td>
<td>Mean 410.3 (26.2)</td>
<td>Mean 409.9 (24.9)</td>
<td>t 0.10 df 205 P 0.92</td>
</tr>
<tr>
<td>End-point (N=83)</td>
<td>Mean 412.6 (31.0)</td>
<td>Mean 413.8 (15.2)</td>
<td>t 0.14 df 81 P 0.88</td>
</tr>
<tr>
<td>Mean change<sup>b</sup></td>
<td>2.3<sup>ns</sup> (21.9)</td>
<td>3.9<sup>ns</sup> (14.3)</td>
<td>t 1.9 df 44 P 0.07</td>
</tr>
</tbody>
</table>

† On-medication subjects being on ADHD-medication at one-year follow-up, atomoxetine (n=10) included.

a. T test, independent groups, 2-sided sig. between On- and Off-medication groups.
b. Paired samples t test between pretreatment and end-point within group.
*** P<0.001, ** P<0.01, * P<0.05, ns=not significant.
c. Electrocardiographic QTc by the Basset formula (QTc = QT/RR).
Supplementary Figure Change of ADHD symptoms by medication type at endpoint

Mean reduction of ASRS total score from baseline to endpoint by groups of patients on different type of medications. Error bars: 95% CI. Discontinued medication: P<0.001, t=5.1, df=68; MPH: P<0.001, t=19.8, df=127; dAMP: P<0.001, t=7.6, df=24; ATX: P<0.01, df=9.
Statistical analysis

Longitudinal analyses by linear mixed models (LMM) were performed to assess treatment effect on change over time in the following outcomes: ASRSv.1.1, GAF-S, GAF-F and GSI at scheduled follow-up visits. Several baseline variables considered to be potential confounders for the association between treatment and outcome were adjusted for: Gender, Age at inclusion, indicators for Depression, Bipolar or Anxiety Disorder, Substance and Alcohol Use Disorder and Antisocial Personality Disorder. Model selection was based on maximum likelihood (and restricted maximum likelihood) and non-significant covariates were excluded. The time course of the outcomes was modeled with two piecewise linear splines, prior and following time point t^*, where t^* was 6 weeks for ASRS and 26 weeks for GAF-S, GAF-F and GSI.

To assess a dose-response effect of treatment a cumulative dose variable was constructed ($CumD$). Side effects ($SideEff$) was measured (CADDRA) and served as a time-varying covariate. A cumulative side-effect variable was also constructed ($CumSE$). Higher equivalent dose of medication was associated with higher $SideEff$, and higher $SideEff$ predicted less medication in the next period and also more loss to follow-up. Thus, $SideEff$ plays a role, both as a potential time-varying confounder and a source for selection bias (from loss to follow-up). In the present model, $CumSE$ is adjusted for to reduce the selection bias, and to give a conservative estimate of the treatment effect (adjustment reduced the treatment effect).
The following equation describes the model (with adjustment for one baseline confounder):

\[Y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i}) \times st_{1j} + (\beta_2 + b_{2i}) \times st_{2j} + \beta_3 CumD_{ij} + \beta_4 CumSE_{ij} + \beta_5 X_{1i} + e_{ij} \]

where \(Y_{ij} \) is outcome for person \(i = 1, \ldots, 250 \) at timepoint \(j = 1, \ldots, 5 \), \(e_{ij} \) is the error term, \(\beta_0, \beta_1 \ldots \) are the fixed effects (population averages), \(b_{0i}, b_{1i} \ldots \) are the individual specific random intercepts and slopes before and after \(t^* \), the two spline time-scales are \(st_{1j} = \min(time_j, t^*) \) and \(st_{2j} = \max(0, time_j - t^*) \) and the two cumulative covariates are given by

\[CumD_{ij} = \sum_{k=0}^{l} Dose_{ik}, \quad CumSE_{ij} = \sum_{k=0}^{l} SideEff_{ik} \]