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Spirometric Classifications of Chronic Obstructive
Pulmonary Disease Severity as Predictive Markers
for Clinical Outcomes: The HUNT Study

The classification of chronic obstructive pulmonary disease (COPD)
severity is important in guiding therapy and prognosis (1). The
Global Initiative for Chronic Obstructive Lung Disease (GOLD)
has recommended GOLD grades (1) based on post-bronchodilator
percentage-predicted FEV1 (ppFEV1), which is widely used in
respiratory medicine. However, ppFEV1 has been criticized
because of its susceptibility to physiological variation (2–4).
Studies have recommended alternative expressions of FEV1 that
could be used for the classification of COPD severity (2, 3, 5–9).
For the first time, we have compared the predictive abilities
of a broad range of FEV1 expressions for cause-specific mortality
and hospitalization.

Some of the results of these studies have been previously
reported in the form of a preprint (https://doi.org/10.1101/
2020.11.03.20221432).

Methods
This study included people aged >40 years who participated in
the HUNT2 Study (Trøndelag Health Study 2) during 1995–1997
(n = 44,384; 75.2% participation). A 5% random sample
(n = 2,300) and people reporting asthma-related symptoms,
diagnosis, or use of medication (n = 7,123) were invited to
perform spirometry (10). For the analysis, we included 890 people
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with COPD who met both the fixed ratio (post-bronchodilator
FEV1/FVC ,0.70) and lower limit of normal criteria and had
respiratory symptoms (daily cough in periods, cough with
phlegm, wheezing, or dyspnea) and/or self-reported doctor-
diagnosed COPD (1, 11).

Post-bronchodilator spirometry was performed 30 minutes
after inhalation of 1 mg of terbutaline according to the 1994
American Thoracic Society guidelines (12, 13). Quality assurance
of spirometric measurements is described in detail elsewhere
(13, 14).

We defined expressions of FEV1 such as ppFEV1, FEV1

z-score, FEV1$Ht22, FEV1$Ht23, and FEV1Q (described in
detail in Reference 15) as suggested by the previous studies (1–3,
5, 6, 8, 9, 16). The Global Lung Function Initiative 2012 reference
equation was used to calculate ppFEV1, ppFVC, FEV1 z-scores,
and FVC z-scores (11, 13). FEV1 was standardized by the square
of height in meters to calculate FEV1$Ht22 (6, 9) and by the
cube of height in meters to calculate FEV1$Ht23 (5, 8). FEV1

was standardized by sex-specific lowest percentile (0.5 L for men
and 0.4 L for women) of FEV1 distribution among patients to
calculate FEV1Q, as suggested by Miller and Pederson in a large
European population consisting of three cohorts (5).

Follow-up and outcomes. The study outcomes were all-cause
mortality, respiratory mortality, cardiovascular mortality, the first
unplanned COPD hospitalization, and the first unplanned
pneumonia hospitalization. Participants were followed for 5 years,
and right-censoring events were emigration (n= 3) or end of follow-
up. Cause-specific mortality and hospitalizations were identified
using International Classification of Diseases codes from medical
records and are described in detail elsewhere (15).

Statistical analysis. Cumulative incidence curves for all-cause
mortality were constructed through Kaplan-Meier estimates, and
log-rank tests were used to test differences.

A regression tree method (17) that accounts for time and
multiple outcomes was applied to obtain optimal cutoffs of FEV1Q
(2.8, 4.1, and 5.2), termed FEV1Q grades.

We applied incident/dynamic time-dependent areas under
the receiver operating characteristic curves (AUCs) that account
for time to compare the predictive abilities of FEV1 expressions
and their respective methods of classification of COPD severity
to predict clinical outcomes (18–21). For cause-specific mortality
and hospitalization, AUCs accounting for competing risks
were calculated (20). We used crude models to compare AUCs
because the clinical decision does not explicitly take into
account other factors (5). We used 10,000 bootstrap iterations
to calculate the 95% confidence interval for AUCs (22).
A general bootstrap algorithm (23) was applied to compare
the AUCs.

Statistical analysis was performed using R 3.6.1 software
(http://www.r-project.org).

Ethics. Ethical approval was obtained from the Regional
Committees for Medical and Health Research Ethics
(2015/1461/REK midt). All participants gave informed written
consent.

Results
During the follow-up period, 146, 30, and 56 subjects died
because of all causes, respiratory diseases, and cardiovascular
diseases, respectively, and 172 and 96 were hospitalized because

of COPD and pneumonia, respectively. At baseline, the average
age of participants was 63.8 years, 6 of 10 participants were men, and
more than half (53.3%) of participants were current smokers (15). A
trend for increasing cumulative incidence of all-cause mortality
with worsening categories of classifications of COPD severity was
observed (Figure 1).

When using FEV1 expressions as continuous measures, the
AUCs for all-cause mortality were 64.5 for ppFEV1, 58.8 for FEV1

z-score, 68.9 for FEV1$Ht22, 69.3 for FEV1$Ht23, and 70.2 for
FEV1Q (P value for AUCs between ppFEV1 and FEV1Q ,0.001).
Similar patterns of AUCs were observed for cause-specific
mortality and hospitalization, except for respiratory mortality
(P= 0.062) (Figure 2).

The FEV1Q grades had higher AUCs compared with
GOLD grades for predicting all-cause mortality (P, 0.001),
cardiovascular mortality (P= 0.005), COPD hospitalization
(P, 0.001), and pneumonia hospitalization (P, 0.001) but
not for respiratory mortality (P= 0.464) (Figure 2). Similar
patterns of AUCs were observed when using FEV1 expressions as
ppFEV1 quartiles and FEV1Q quartiles, except for respiratory
mortality (P= 0.848) and cardiovascular mortality (P= 0.381)
(Figure 2).

Discussion
In this population-based study, we found that among all FEV1

expressions, FEV1Q was the best predictor of clinical outcomes
studied, followed by FEV1$Ht22 or FEV1$Ht23, across 5 years
of follow-up. For respiratory mortality, the smaller sample size
gives imprecise estimates, resulting in a marginally similar
predictive ability for FEV1Q and ppFEV1.

FEV1 is a continuous variable, the expression of FEV1 is
used for indicating lung function impairments in respiratory medicine,
and ppFEV1 is most commonly used for this purpose (1). The GOLD
grades based on ppFEV1 have been widely used for clinical purposes
in classifying COPD severity (1). However, they have been criticized
because of their susceptibility to physiological variation and poor
prediction ability (2–4, 6). The FEV1 z-score avoids this bias due to
physiological variation (2, 3). In addition, ppFEV1 and FEV1 z-scores
are based on reference values and depend on the choice of reference
equation; therefore, performance might vary with reference values (11,
13, 24, 25). Miller and colleagues (5–7) found that FEV1 expressions
such as FEV1$Ht

22, FEV1$Ht
23, and FEV1Q, which are

independent of reference equations, were better correlated with
mortality than those that are dependent on reference equations.
In addition, Miller and Pedersen (5) found that FEV1Q predicted
mortality better than other FEV1 expressions. Extending this
knowledge, our study supports FEV1Q as a stronger predictor
than other FEV1 expressions in predicting multiple clinical outcomes.
This indicates that the severity in people with COPD appears to be
better related to how far the FEV1 of that person is from the “bottom
line” rather than how far it is from a “predicted value.”

The predictive ability of a classification of COPD severity
based on a FEV1 expression largely depends on the choice of cutoffs.
For example, the GOLD grades and ppFEV1 quartiles had different
predictive abilities in our study. Huang and colleagues (4) observed
similar results. Therefore, the optimal cutoffs of FEV1 expressions
for classification of COPD severity were investigated in this study, and
we found that cutoffs for FEV1Q (2.8, 4.1, and 5.2; FEV1Q grades)
were generally best in predicting clinical outcomes. The optimal
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cutoffs should be further investigated in a large multiethnic population
with a wide age range. In a clinical setting, information such
as age, sex, and height of patients with COPD is easily available.
Therefore, using FEV1Q (or other expressions of FEV1 that
are independent of reference equations) for risk classification
of patients with COPD might be easy to apply and avoid variation
due to dependence on reference equations (5). Furthermore,

multidimensional prognostic indices that combine reference
independent FEV1 expressions with symptoms, exacerbations, risk
factors, and/or biomarkers should be investigated further.

This study also had certain limitations. Our methods may not
capture nonlinear associations between FEV1 expressions and
mortality (26) or hospitalization, and further studies investigating
these approaches are needed.
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Figure 1. Cumulative incidence curves of classifications of chronic obstructive pulmonary disease (COPD) severity for all-cause mortality among
participants with COPD aged >40 years in the HUNT2 Study (Trøndelag Health Study 2) (1995–1997) followed for 5 years. FEV1$Ht

22 = FEV1

standardized by square of height in meters; FEV1$Ht
23 = FEV1 standardized by cube of height in meters; FEV1Q=FEV1 standardized by sex-specific

lowest percentile (0.5 L for men and 0.4 L for women) of FEV1 distribution; FEV1 z-score = FEV1z-score based on the Global Lung Function Initiative 2012
equation; GOLD=Global Initiative for Chronic Obstructive Lung Disease; ppFEV1=percentage-predicted FEV1 based on the Global Lung Function
Initiative 2012 equation.
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In summary, these findings highlight improved prediction of
outcomes by the use of FEV1Q. n
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Figure 2. The areas under the receiver operating characteristic curves (AUCs) for different expressions of FEV1 and their respective methods of
classification of chronic obstructive pulmonary disease (COPD) severity for all-cause mortality (n=146), respiratory mortality (n=30), cardiovascular
mortality (n=56), COPD hospitalization (n=172), and pneumonia hospitalization (n=96) among participants with COPD aged >40 years in the
HUNT2 Study (Trøndelag Health Study 2) (1995–1997) followed for 5 years. #Continuous variables. *Grades/quartiles 3–4 were combined because of zero
cases in grade/quartile 4 in Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, FEV1 z-score grades, and FEV1 standardized by square
of height in meters (FEV1$Ht

22) grades. **Grades/quartiles 2–4 were analyzed because of zero cases in grade/quartile 1 of GOLD grades, FEV1$Ht
22
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23 quartiles, FEV1 standardized by sex-specific lowest percentile (0.5 L for men and 0.4 L for women) of FEV1 distribution (FEV1Q)

quartiles, and FEV1Q grades. Similar differences in AUCs were observed when grade/quartiles 1–2 were combined for respiratory mortality. P value
represents the differences between ppFEV1 vs. FEV1Q, ppFEV1 quartiles versus FEV1Q quartiles, and GOLD grades versus FEV1Q grades.
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Initiative 2012 equation; ppFEV1=percentage-predicted FEV1 based on the Global Lung Function Initiative 2012 equation.
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Preclinical Development of Virulence-attenuated
Streptococcus pneumoniae Strains Able to Enhance
Protective Immunity against Pneumococcal
Infection

To the Editor:

The existing vaccination strategies for prevention of adult
Streptococcus pneumoniae lung infections are only partially
effective (1) and novel preventive approaches are required. Recent
data have shown that adults develop immunity to S. pneumoniae
through repeated episodes of asymptomatic nasopharyngeal
colonization (2–6). This naturally acquired immunity includes
protective responses to both protein and capsular antigens
(2–6) and is boosted by recolonization events (4, 7). These data
suggest that deliberate nasopharyngeal administration of live
S. pneumoniae could prevent serious S. pneumoniae infections
by strengthening preexisting cross-serotype protective immunity
that inhibits nasopharyngeal colonization with virulent strains,
increases antigen-specific systemic immunity, and perhaps
strengthens alveolar macrophage–mediated innate immunity (2, 3,
6, 7). This strategy would require S. pneumoniae strains able to
stimulate protective immunity but unable to cause disease in a
population with an underlying increased susceptibility to
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